A Remark on the Structure of the Busemann Representative of a Polyconvex Function
Journal of convex analysis, Tome 18 (2011) no. 1, pp. 203-208
Cet article a éte moissonné depuis la source Heldermann Verlag
\newcommand{\R}{{\bf R}} Under mild conditions on a polyconvex function $W: \R^{2 \times 2} \to \R$, its largest convex representative, known as the Busemann representative, may be written as the supremum over all affine functions $\phi: \R^{5} \to \R$ satisfying $\phi(\xi,\det \xi) \leq W(\xi)$ for all $ 2 \times 2$ matrices $\xi$. In this paper, we construct an example of a polyconvex $W: \R^{2 \times 2} \to \R$ whose Busemann representative is, on an open set, strictly larger than the supremum of all affine functions $\phi$ as above and which also satisfy $\phi(\xi_{0},\det \xi_{0}) = W(\xi_{0})$ for at least one $2 \times 2$ matrix $\xi_{0}$.
@article{JCA_2011_18_1_JCA_2011_18_1_a10,
author = {J. J. Bevan},
title = {A {Remark} on the {Structure} of the {Busemann} {Representative} of a {Polyconvex} {Function}},
journal = {Journal of convex analysis},
pages = {203--208},
year = {2011},
volume = {18},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JCA_2011_18_1_JCA_2011_18_1_a10/}
}
TY - JOUR AU - J. J. Bevan TI - A Remark on the Structure of the Busemann Representative of a Polyconvex Function JO - Journal of convex analysis PY - 2011 SP - 203 EP - 208 VL - 18 IS - 1 UR - http://geodesic.mathdoc.fr/item/JCA_2011_18_1_JCA_2011_18_1_a10/ ID - JCA_2011_18_1_JCA_2011_18_1_a10 ER -
J. J. Bevan. A Remark on the Structure of the Busemann Representative of a Polyconvex Function. Journal of convex analysis, Tome 18 (2011) no. 1, pp. 203-208. http://geodesic.mathdoc.fr/item/JCA_2011_18_1_JCA_2011_18_1_a10/