A Remark on the Structure of the Busemann Representative of a Polyconvex Function
Journal of convex analysis, Tome 18 (2011) no. 1, pp. 203-208.

Voir la notice de l'article provenant de la source Heldermann Verlag

\newcommand{\R}{{\bf R}} Under mild conditions on a polyconvex function $W: \R^{2 \times 2} \to \R$, its largest convex representative, known as the Busemann representative, may be written as the supremum over all affine functions $\phi: \R^{5} \to \R$ satisfying $\phi(\xi,\det \xi) \leq W(\xi)$ for all $ 2 \times 2$ matrices $\xi$. In this paper, we construct an example of a polyconvex $W: \R^{2 \times 2} \to \R$ whose Busemann representative is, on an open set, strictly larger than the supremum of all affine functions $\phi$ as above and which also satisfy $\phi(\xi_{0},\det \xi_{0}) = W(\xi_{0})$ for at least one $2 \times 2$ matrix $\xi_{0}$.
@article{JCA_2011_18_1_JCA_2011_18_1_a10,
     author = {J. J. Bevan},
     title = {A {Remark} on the {Structure} of the {Busemann} {Representative} of a {Polyconvex} {Function}},
     journal = {Journal of convex analysis},
     pages = {203--208},
     publisher = {mathdoc},
     volume = {18},
     number = {1},
     year = {2011},
     url = {http://geodesic.mathdoc.fr/item/JCA_2011_18_1_JCA_2011_18_1_a10/}
}
TY  - JOUR
AU  - J. J. Bevan
TI  - A Remark on the Structure of the Busemann Representative of a Polyconvex Function
JO  - Journal of convex analysis
PY  - 2011
SP  - 203
EP  - 208
VL  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2011_18_1_JCA_2011_18_1_a10/
ID  - JCA_2011_18_1_JCA_2011_18_1_a10
ER  - 
%0 Journal Article
%A J. J. Bevan
%T A Remark on the Structure of the Busemann Representative of a Polyconvex Function
%J Journal of convex analysis
%D 2011
%P 203-208
%V 18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2011_18_1_JCA_2011_18_1_a10/
%F JCA_2011_18_1_JCA_2011_18_1_a10
J. J. Bevan. A Remark on the Structure of the Busemann Representative of a Polyconvex Function. Journal of convex analysis, Tome 18 (2011) no. 1, pp. 203-208. http://geodesic.mathdoc.fr/item/JCA_2011_18_1_JCA_2011_18_1_a10/