On some Curvature-Dependent Steplength for the Gradient Method
Journal of convex analysis, Tome 17 (2010) no. 3, pp. 765-78.

Voir la notice de l'article provenant de la source Heldermann Verlag

The aim of this paper is to show the interest of taking into account the notion of curvature in gradient methods. More precisely, given a Hilbert space $H$ and a strictly convex function $\phi:H\to {\mathbb{R}}$ of class ${\mathcal C}^2$, we consider the following algorithm $$x_{n+1}=x_n-\lambda_n\, \nabla \phi(x_n),\quad \mbox{ with } \lambda_n = \frac{|\nabla \phi(x_n)|^2}{\langle\nabla^2\phi(x_n).\nabla\phi(x_n), \nabla\phi(x_n)\rangle}.\leqno (\star)$$ We obtain results of linear convergence for the above algorithm, even without strong convexity. Some variants of $(\star)$ are also considered, with different expressions of the curvature-dependent steplength $\lambda_n$. A large part of the paper is devoted to the study of an implicit version of $(\star)$, falling into the field of the proximal point iteration. All these algorithms are clearly related to the Barzilai-Borwein method and numerical illustrations at the end of the paper allow to compare these different schemes.
Classification : 65K10, 90C25, 49M25
Mots-clés : Unconstrained convex optimization, steepest descent, gradient method, proximal point algorithm, Barzilai-Borwein stepsize
@article{JCA_2010_17_3_JCA_2010_17_3_a4,
     author = {B. Baji and A. Cabot},
     title = {On some {Curvature-Dependent} {Steplength} for the {Gradient} {Method}},
     journal = {Journal of convex analysis},
     pages = {765--78},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2010},
     url = {http://geodesic.mathdoc.fr/item/JCA_2010_17_3_JCA_2010_17_3_a4/}
}
TY  - JOUR
AU  - B. Baji
AU  - A. Cabot
TI  - On some Curvature-Dependent Steplength for the Gradient Method
JO  - Journal of convex analysis
PY  - 2010
SP  - 765
EP  - 78
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2010_17_3_JCA_2010_17_3_a4/
ID  - JCA_2010_17_3_JCA_2010_17_3_a4
ER  - 
%0 Journal Article
%A B. Baji
%A A. Cabot
%T On some Curvature-Dependent Steplength for the Gradient Method
%J Journal of convex analysis
%D 2010
%P 765-78
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2010_17_3_JCA_2010_17_3_a4/
%F JCA_2010_17_3_JCA_2010_17_3_a4
B. Baji; A. Cabot. On some Curvature-Dependent Steplength for the Gradient Method. Journal of convex analysis, Tome 17 (2010) no. 3, pp. 765-78. http://geodesic.mathdoc.fr/item/JCA_2010_17_3_JCA_2010_17_3_a4/