Hidden Convexity in some Nonlinear PDEs from Geomety and Physics
Journal of convex analysis, Tome 17 (2010) no. 3, pp. 945-959.

Voir la notice de l'article provenant de la source Heldermann Verlag

There is a prejudice among some specialists of non linear partial differential equations and differential geometry: convex analysis is an elegant theory but too rigid to address some of the most interesting and challenging problems in their field. Convex analysis is mostly attached to elliptic and parabolic equations of variational origin, for which a suitable convex potential can be exhibited and shown to be minimized (either statically or dynamically). The Dirichlet principle for linear elliptic equation is archetypal.
@article{JCA_2010_17_3_JCA_2010_17_3_a13,
     author = {Y. Brenier},
     title = {Hidden {Convexity} in some {Nonlinear} {PDEs} from {Geomety} and {Physics}},
     journal = {Journal of convex analysis},
     pages = {945--959},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2010},
     url = {http://geodesic.mathdoc.fr/item/JCA_2010_17_3_JCA_2010_17_3_a13/}
}
TY  - JOUR
AU  - Y. Brenier
TI  - Hidden Convexity in some Nonlinear PDEs from Geomety and Physics
JO  - Journal of convex analysis
PY  - 2010
SP  - 945
EP  - 959
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2010_17_3_JCA_2010_17_3_a13/
ID  - JCA_2010_17_3_JCA_2010_17_3_a13
ER  - 
%0 Journal Article
%A Y. Brenier
%T Hidden Convexity in some Nonlinear PDEs from Geomety and Physics
%J Journal of convex analysis
%D 2010
%P 945-959
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2010_17_3_JCA_2010_17_3_a13/
%F JCA_2010_17_3_JCA_2010_17_3_a13
Y. Brenier. Hidden Convexity in some Nonlinear PDEs from Geomety and Physics. Journal of convex analysis, Tome 17 (2010) no. 3, pp. 945-959. http://geodesic.mathdoc.fr/item/JCA_2010_17_3_JCA_2010_17_3_a13/