On Malamud Majorization and the Extreme Points of its Level Sets
Journal of convex analysis, Tome 17 (2010) no. 2, pp. 485-507.

Voir la notice de l'article provenant de la source Heldermann Verlag

\baselineskip=13pt \newcommand{\R}{\mathbb{R}} We consider two types of majorization relationships between sequences of vectors $y=(y_k)_{k=1}^m$ and $x=(x_k)_{k=1}^\ell$ in $\R^n$ with $\ell\le m$. It is said that $x$ is majorized by $y$, $x \prec y$, if the sum of any $k$ vectors from $x$ is in the convex hull of all possible sums of $k$ vectors from $y$. It is said that $x$ is doubly stochastically majorized by $y$, $x \prec_{\rm ds} y$, if $x_k = \sum_{j=1}^m m_{kj}y_j$, $k=1,...,\ell$, for some doubly stochastic matrix $M=(m_{kj})_{k,j=1}^{m,m}$. \par In a recent article ["Inverse spectral problem for normal matrices and the Gauss-Lucas Theorem", Trans. Amer. Math. Soc. 357(10) (2004) 4043--4064] S. M. Malamud formulated the problem of finding a geometric condition guaranteeing that $x\prec y \Leftrightarrow x \prec_{\rm ds} y$. We answer this question in the case when the vectors in $y$ are distinct and are extreme points of their convex hull. In particular, we derive a geometric characterization of the extreme points of the level set $L^2_{\prec}(y)=\{x : x \prec y\}$. Finally, we derive a set of algebraic conditions that characterize the extreme points of $L^\ell_{\prec}(y)=\{x : x \prec y\}$ for any $\ell \le m$ and $y$.
Classification : 52B11, 42A20
Mots-clés : Convex set, doubly stochastic majorization, Malamud majorization, extreme point, convex function, CVS class
@article{JCA_2010_17_2_JCA_2010_17_2_a7,
     author = {P. Fischer and H. Sendov},
     title = {On {Malamud} {Majorization} and the {Extreme} {Points} of its {Level} {Sets}},
     journal = {Journal of convex analysis},
     pages = {485--507},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2010},
     url = {http://geodesic.mathdoc.fr/item/JCA_2010_17_2_JCA_2010_17_2_a7/}
}
TY  - JOUR
AU  - P. Fischer
AU  - H. Sendov
TI  - On Malamud Majorization and the Extreme Points of its Level Sets
JO  - Journal of convex analysis
PY  - 2010
SP  - 485
EP  - 507
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2010_17_2_JCA_2010_17_2_a7/
ID  - JCA_2010_17_2_JCA_2010_17_2_a7
ER  - 
%0 Journal Article
%A P. Fischer
%A H. Sendov
%T On Malamud Majorization and the Extreme Points of its Level Sets
%J Journal of convex analysis
%D 2010
%P 485-507
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2010_17_2_JCA_2010_17_2_a7/
%F JCA_2010_17_2_JCA_2010_17_2_a7
P. Fischer; H. Sendov. On Malamud Majorization and the Extreme Points of its Level Sets. Journal of convex analysis, Tome 17 (2010) no. 2, pp. 485-507. http://geodesic.mathdoc.fr/item/JCA_2010_17_2_JCA_2010_17_2_a7/