When are Extreme Points Enough?
Journal of convex analysis, Tome 17 (2010) no. 2, pp. 565-582
Voir la notice de l'article provenant de la source Heldermann Verlag
We establish sufficient conditions for when the image a linear transformation on a compact, convex set in a real linear Hausdorff space is the same of the image of the linear transformation on the extreme points of that set. We show why several of those conditions cannot be relaxed and give an application.
Classification :
52A07
Mots-clés : Convex sets in topological vector spaces, extreme points, theorems of Lyapunov type
Mots-clés : Convex sets in topological vector spaces, extreme points, theorems of Lyapunov type
@article{JCA_2010_17_2_JCA_2010_17_2_a12,
author = {D. Baker and M. D. Wills},
title = {When are {Extreme} {Points} {Enough?}},
journal = {Journal of convex analysis},
pages = {565--582},
publisher = {mathdoc},
volume = {17},
number = {2},
year = {2010},
url = {http://geodesic.mathdoc.fr/item/JCA_2010_17_2_JCA_2010_17_2_a12/}
}
D. Baker; M. D. Wills. When are Extreme Points Enough?. Journal of convex analysis, Tome 17 (2010) no. 2, pp. 565-582. http://geodesic.mathdoc.fr/item/JCA_2010_17_2_JCA_2010_17_2_a12/