On the Continuous Representation of Quasiconcave Functions by Their Upper Level Sets
Journal of convex analysis, Tome 17 (2010) no. 1, pp. 95-101.

Voir la notice de l'article provenant de la source Heldermann Verlag

We provide a continuous representation of quasiconcave functions by their upper level sets. A possible motivation is the extension to quasiconcave functions of a result by D. H. Hyers and S. M. Ulam [Proc. Amer. Math. Soc. 3(5) (1952) 821--828], which states that every approximately convex function can be approximated by a convex function.
Mots-clés : Quasiconcave, upper level set
@article{JCA_2010_17_1_JCA_2010_17_1_a7,
     author = {P. Bich},
     title = {On the {Continuous} {Representation} of {Quasiconcave} {Functions} by {Their} {Upper} {Level} {Sets}},
     journal = {Journal of convex analysis},
     pages = {95--101},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2010},
     url = {http://geodesic.mathdoc.fr/item/JCA_2010_17_1_JCA_2010_17_1_a7/}
}
TY  - JOUR
AU  - P. Bich
TI  - On the Continuous Representation of Quasiconcave Functions by Their Upper Level Sets
JO  - Journal of convex analysis
PY  - 2010
SP  - 95
EP  - 101
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2010_17_1_JCA_2010_17_1_a7/
ID  - JCA_2010_17_1_JCA_2010_17_1_a7
ER  - 
%0 Journal Article
%A P. Bich
%T On the Continuous Representation of Quasiconcave Functions by Their Upper Level Sets
%J Journal of convex analysis
%D 2010
%P 95-101
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2010_17_1_JCA_2010_17_1_a7/
%F JCA_2010_17_1_JCA_2010_17_1_a7
P. Bich. On the Continuous Representation of Quasiconcave Functions by Their Upper Level Sets. Journal of convex analysis, Tome 17 (2010) no. 1, pp. 95-101. http://geodesic.mathdoc.fr/item/JCA_2010_17_1_JCA_2010_17_1_a7/