Non-Enlargeable Operators and Self-Cancelling Operators
Journal of convex analysis, Tome 17 (2010) no. 1, pp. 309-32.

Voir la notice de l'article provenant de la source Heldermann Verlag

The ε-enlargement of a maximal monotone operator is a construct similar to the Brøndsted and Rockafellar ε-subdifferential enlargement of the subdifferential. Like the ε-subdifferential, the ε-enlargement of a maximal monotone operator has practical and theoretical applications.
Classification : 47H05, 49J52, 47N10
Mots-clés : Maximal monotone operators, enlargements, Banach spaces
@article{JCA_2010_17_1_JCA_2010_17_1_a22,
     author = {B. F. Svaiter},
     title = {Non-Enlargeable {Operators} and {Self-Cancelling} {Operators}},
     journal = {Journal of convex analysis},
     pages = {309--32},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2010},
     url = {http://geodesic.mathdoc.fr/item/JCA_2010_17_1_JCA_2010_17_1_a22/}
}
TY  - JOUR
AU  - B. F. Svaiter
TI  - Non-Enlargeable Operators and Self-Cancelling Operators
JO  - Journal of convex analysis
PY  - 2010
SP  - 309
EP  - 32
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2010_17_1_JCA_2010_17_1_a22/
ID  - JCA_2010_17_1_JCA_2010_17_1_a22
ER  - 
%0 Journal Article
%A B. F. Svaiter
%T Non-Enlargeable Operators and Self-Cancelling Operators
%J Journal of convex analysis
%D 2010
%P 309-32
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2010_17_1_JCA_2010_17_1_a22/
%F JCA_2010_17_1_JCA_2010_17_1_a22
B. F. Svaiter. Non-Enlargeable Operators and Self-Cancelling Operators. Journal of convex analysis, Tome 17 (2010) no. 1, pp. 309-32. http://geodesic.mathdoc.fr/item/JCA_2010_17_1_JCA_2010_17_1_a22/