Lagrange Mulitpliers and Lower Bounds for Integral Functionals
Journal of convex analysis, Tome 17 (2010) no. 1, pp. 301-308
Voir la notice de l'article provenant de la source Heldermann Verlag
We present a large class of examples with the remarkable property pointed out by B. Ricceri in "A variational property of integral functionals on Lp spaces of vector-valued functions" [C. R. Acad. Sci. Paris, Série I Math. 318 (1994) 337--342], "More on a variational property of integral functionals" [J. Optimisation Theory Appl. 94 (1997) 757--763], and in "Further considerations on a variational property of integral functionals" [J. Optimisation Theory Appl. 106 (2000) 677--681], about lower bounds of integral functionals. We use only a Lagrange duality result of A. Bourass and E. Giner [see: "Kuhn-Tucker conditions and integral functionals", J. Convex Analysis 8 (2001) 533--553].
Classification :
26A51, 26B20, 26E15, 28B15, 28B20, 46E30, 46N10, 49K40
Mots-clés : Decomposability, richness, essential infimum, measurable integrand, integral functional, duality, Lagrange multipliers
Mots-clés : Decomposability, richness, essential infimum, measurable integrand, integral functional, duality, Lagrange multipliers
@article{JCA_2010_17_1_JCA_2010_17_1_a21,
author = {E. Giner},
title = {Lagrange {Mulitpliers} and {Lower} {Bounds} for {Integral} {Functionals}},
journal = {Journal of convex analysis},
pages = {301--308},
publisher = {mathdoc},
volume = {17},
number = {1},
year = {2010},
url = {http://geodesic.mathdoc.fr/item/JCA_2010_17_1_JCA_2010_17_1_a21/}
}
E. Giner. Lagrange Mulitpliers and Lower Bounds for Integral Functionals. Journal of convex analysis, Tome 17 (2010) no. 1, pp. 301-308. http://geodesic.mathdoc.fr/item/JCA_2010_17_1_JCA_2010_17_1_a21/