Intersections of Balls and the Ball Hull Mapping
Journal of convex analysis, Tome 17 (2010) no. 1, pp. 277-292.

Voir la notice de l'article provenant de la source Heldermann Verlag

We are concerned with some properties of the family of all subsets of a Banach space that can be written as an intersection of balls. A space with the Mazur Intersection Property (MIP) always satisfies those properties, so they can be regarded as weakenings of the MIP in different directions. The "ball hull" function (mapping a set to the intersection of all closed balls that cover it) is often an effective tool to study those properties.
Classification : 46B20, 46B26, 60D05
Mots-clés : Intersection of balls, Mazur intersection property, Mazur set, semidenting point, weak* denting point
@article{JCA_2010_17_1_JCA_2010_17_1_a19,
     author = {P. Ter\'an},
     title = {Intersections of {Balls} and the {Ball} {Hull} {Mapping}},
     journal = {Journal of convex analysis},
     pages = {277--292},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2010},
     url = {http://geodesic.mathdoc.fr/item/JCA_2010_17_1_JCA_2010_17_1_a19/}
}
TY  - JOUR
AU  - P. Terán
TI  - Intersections of Balls and the Ball Hull Mapping
JO  - Journal of convex analysis
PY  - 2010
SP  - 277
EP  - 292
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2010_17_1_JCA_2010_17_1_a19/
ID  - JCA_2010_17_1_JCA_2010_17_1_a19
ER  - 
%0 Journal Article
%A P. Terán
%T Intersections of Balls and the Ball Hull Mapping
%J Journal of convex analysis
%D 2010
%P 277-292
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2010_17_1_JCA_2010_17_1_a19/
%F JCA_2010_17_1_JCA_2010_17_1_a19
P. Terán. Intersections of Balls and the Ball Hull Mapping. Journal of convex analysis, Tome 17 (2010) no. 1, pp. 277-292. http://geodesic.mathdoc.fr/item/JCA_2010_17_1_JCA_2010_17_1_a19/