On Two Properties of Enlargements of Maximal Monotone Operators
Journal of convex analysis, Tome 16 (2009) no. 3, pp. 713-725.

Voir la notice de l'article provenant de la source Heldermann Verlag

We give an answer to an open problem regarding the full enlargeability of a maximal monotone operator $S:X\rightrightarrows X^*$ by $S^{se}$, the smallest enlargement belonging to a certain class of enlargements associated to $S$. Moreover, we prove the weak$^*$ closedness of the set $S_{h_S}(\varepsilon_1,x)+T_{h_T} (\varepsilon_2,x)$ under a weak generalized interior regularity condition.
Classification : 47H05, 46N10, 42A50
Mots-clés : Monotone operator, Fitzpatrick function, representative function, enlargement, subdifferential
@article{JCA_2009_16_3_JCA_2009_16_3_a8,
     author = {R. I. Bot and E. R. Csetnek},
     title = {On {Two} {Properties} of {Enlargements} of {Maximal} {Monotone} {Operators}},
     journal = {Journal of convex analysis},
     pages = {713--725},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2009},
     url = {http://geodesic.mathdoc.fr/item/JCA_2009_16_3_JCA_2009_16_3_a8/}
}
TY  - JOUR
AU  - R. I. Bot
AU  - E. R. Csetnek
TI  - On Two Properties of Enlargements of Maximal Monotone Operators
JO  - Journal of convex analysis
PY  - 2009
SP  - 713
EP  - 725
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2009_16_3_JCA_2009_16_3_a8/
ID  - JCA_2009_16_3_JCA_2009_16_3_a8
ER  - 
%0 Journal Article
%A R. I. Bot
%A E. R. Csetnek
%T On Two Properties of Enlargements of Maximal Monotone Operators
%J Journal of convex analysis
%D 2009
%P 713-725
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2009_16_3_JCA_2009_16_3_a8/
%F JCA_2009_16_3_JCA_2009_16_3_a8
R. I. Bot; E. R. Csetnek. On Two Properties of Enlargements of Maximal Monotone Operators. Journal of convex analysis, Tome 16 (2009) no. 3, pp. 713-725. http://geodesic.mathdoc.fr/item/JCA_2009_16_3_JCA_2009_16_3_a8/