Strongly-Representable Monotone Operators
Journal of convex analysis, Tome 16 (2009) no. 3, pp. 1011-1033.

Voir la notice de l'article provenant de la source Heldermann Verlag

Recently M. Marques Alves and B. F. Svaiter ["Brønsted-Rockafellar property and maximality of monotone operators representable by convex functions in non-reflexive Banach spaces", J. Convex Analysis 15(4) (2008) 693--706] introduced a new class of maximal monotone operators. In this note we study domain-range properties as well as connections with other classes and calculus rules for these operators we called strongly-representable. While not every maximal monotone operator is strongly-representable, every maximal monotone NI operator is strongly-representable, and every strongly-representable operator is locally maximal monotone, maximal monotone locally, strongly maximal monotone, and ANA. As a consequence the conjugate of the Fitzpatrick function of a maximal monotone operator is not necessarily a representative function.
@article{JCA_2009_16_3_JCA_2009_16_3_a28,
     author = {M. D. Voisei and C. Zalinescu},
     title = {Strongly-Representable {Monotone} {Operators}},
     journal = {Journal of convex analysis},
     pages = {1011--1033},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2009},
     url = {http://geodesic.mathdoc.fr/item/JCA_2009_16_3_JCA_2009_16_3_a28/}
}
TY  - JOUR
AU  - M. D. Voisei
AU  - C. Zalinescu
TI  - Strongly-Representable Monotone Operators
JO  - Journal of convex analysis
PY  - 2009
SP  - 1011
EP  - 1033
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2009_16_3_JCA_2009_16_3_a28/
ID  - JCA_2009_16_3_JCA_2009_16_3_a28
ER  - 
%0 Journal Article
%A M. D. Voisei
%A C. Zalinescu
%T Strongly-Representable Monotone Operators
%J Journal of convex analysis
%D 2009
%P 1011-1033
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2009_16_3_JCA_2009_16_3_a28/
%F JCA_2009_16_3_JCA_2009_16_3_a28
M. D. Voisei; C. Zalinescu. Strongly-Representable Monotone Operators. Journal of convex analysis, Tome 16 (2009) no. 3, pp. 1011-1033. http://geodesic.mathdoc.fr/item/JCA_2009_16_3_JCA_2009_16_3_a28/