A Version of the Lax-Milgram Theorem for Locally Convex Spaces
Journal of convex analysis, Tome 16 (2009) no. 3, pp. 993-1002.

Voir la notice de l'article provenant de la source Heldermann Verlag

We show an extension of the Lax-Milgram theorem for the context of locally convex spaces. Furthermore we prove that such version of the Lax-Milgram theorem does not admit an analogous generalization for the multilinear case, even though we give a positive partial result.
Classification : 58E30, 49J40
Mots-clés : Lax--Milgram theorem, variational inequalities
@article{JCA_2009_16_3_JCA_2009_16_3_a26,
     author = {M. Ruiz Gal\'an},
     title = {A {Version} of the {Lax-Milgram} {Theorem} for {Locally} {Convex} {Spaces}},
     journal = {Journal of convex analysis},
     pages = {993--1002},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2009},
     url = {http://geodesic.mathdoc.fr/item/JCA_2009_16_3_JCA_2009_16_3_a26/}
}
TY  - JOUR
AU  - M. Ruiz Galán
TI  - A Version of the Lax-Milgram Theorem for Locally Convex Spaces
JO  - Journal of convex analysis
PY  - 2009
SP  - 993
EP  - 1002
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2009_16_3_JCA_2009_16_3_a26/
ID  - JCA_2009_16_3_JCA_2009_16_3_a26
ER  - 
%0 Journal Article
%A M. Ruiz Galán
%T A Version of the Lax-Milgram Theorem for Locally Convex Spaces
%J Journal of convex analysis
%D 2009
%P 993-1002
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2009_16_3_JCA_2009_16_3_a26/
%F JCA_2009_16_3_JCA_2009_16_3_a26
M. Ruiz Galán. A Version of the Lax-Milgram Theorem for Locally Convex Spaces. Journal of convex analysis, Tome 16 (2009) no. 3, pp. 993-1002. http://geodesic.mathdoc.fr/item/JCA_2009_16_3_JCA_2009_16_3_a26/