A Multiplicity Theorem in Rn
Journal of convex analysis, Tome 16 (2009) no. 3, pp. 987-992.

Voir la notice de l'article provenant de la source Heldermann Verlag

The aim of this paper is to establish the following result:\par \medskip THEOREM 1. - {\it Let $X$ be a finite-dimensional real Hilbert space, and let $J:X\to {\bf R}$ be a $C^1$ function such that $$\liminf_{\|x\|\to +\infty}{{J(x)}\over {\|x\|^2}}\geq 0\ .$$ Moreover, let $x_0\in X$ and $r, s\in {\bf R}$, with $0$, be such that $$\inf_{x\in X}J(x)\inf_{\|x-x_0\|\leq s}J(x)\leq J(x_0)\leq \inf_{r\leq\|x-x_0\|\leq s}J(x)\ .$$ Then, there exists $\hat\lambda> 0$ such that the equation $$x+\hat\lambda J'(x)=x_0$$ has at least three solutions.}\par \medskip We will proceed as follows. We first give the proof of Theorem 1. Then, we discuss in detail the finite-dimensionality assumption on $X$. More precisely, we will show not only that it can not be dropped, but also that it is very hard to imagine some additional condition (different from being $x_0$ a local minimum of $J$) under which one could adapt the given proof to the infinite-dimensional case. We finally conclude presenting an application of Theorem 1 to a discrete boundary value problem.
@article{JCA_2009_16_3_JCA_2009_16_3_a25,
     author = {B. Ricceri},
     title = {A {Multiplicity} {Theorem} in {R\protect\textsuperscript{n}}},
     journal = {Journal of convex analysis},
     pages = {987--992},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2009},
     url = {http://geodesic.mathdoc.fr/item/JCA_2009_16_3_JCA_2009_16_3_a25/}
}
TY  - JOUR
AU  - B. Ricceri
TI  - A Multiplicity Theorem in Rn
JO  - Journal of convex analysis
PY  - 2009
SP  - 987
EP  - 992
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2009_16_3_JCA_2009_16_3_a25/
ID  - JCA_2009_16_3_JCA_2009_16_3_a25
ER  - 
%0 Journal Article
%A B. Ricceri
%T A Multiplicity Theorem in Rn
%J Journal of convex analysis
%D 2009
%P 987-992
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2009_16_3_JCA_2009_16_3_a25/
%F JCA_2009_16_3_JCA_2009_16_3_a25
B. Ricceri. A Multiplicity Theorem in Rn. Journal of convex analysis, Tome 16 (2009) no. 3, pp. 987-992. http://geodesic.mathdoc.fr/item/JCA_2009_16_3_JCA_2009_16_3_a25/