Numerical Computation of Fitzpatrick Functions
Journal of convex analysis, Tome 16 (2009) no. 3, pp. 779-79.

Voir la notice de l'article provenant de la source Heldermann Verlag

Fitzpatrick functions provide insights into the structure of operators. To help understand their information, we investigate their efficient numerical computation on a grid for operators with finite graphs defined on the real line. Our algorithms take advantage of existing computational Convex Analysis frameworks to improve previous worst-case time complexity results from quartic to quadratic. We also provide a linear-time algorithm for the computation of antiderivatives based on the Fitzpatrick function of infinite order.
@article{JCA_2009_16_3_JCA_2009_16_3_a12,
     author = {B. Gardiner and Y. Lucet},
     title = {Numerical {Computation} of {Fitzpatrick} {Functions}},
     journal = {Journal of convex analysis},
     pages = {779--79},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2009},
     url = {http://geodesic.mathdoc.fr/item/JCA_2009_16_3_JCA_2009_16_3_a12/}
}
TY  - JOUR
AU  - B. Gardiner
AU  - Y. Lucet
TI  - Numerical Computation of Fitzpatrick Functions
JO  - Journal of convex analysis
PY  - 2009
SP  - 779
EP  - 79
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2009_16_3_JCA_2009_16_3_a12/
ID  - JCA_2009_16_3_JCA_2009_16_3_a12
ER  - 
%0 Journal Article
%A B. Gardiner
%A Y. Lucet
%T Numerical Computation of Fitzpatrick Functions
%J Journal of convex analysis
%D 2009
%P 779-79
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2009_16_3_JCA_2009_16_3_a12/
%F JCA_2009_16_3_JCA_2009_16_3_a12
B. Gardiner; Y. Lucet. Numerical Computation of Fitzpatrick Functions. Journal of convex analysis, Tome 16 (2009) no. 3, pp. 779-79. http://geodesic.mathdoc.fr/item/JCA_2009_16_3_JCA_2009_16_3_a12/