Maximal Monotone Operators with a Unique Extension to the Bidual
Journal of convex analysis, Tome 16 (2009) no. 2, pp. 409-421.

Voir la notice de l'article provenant de la source Heldermann Verlag

\newcommand{\tos}{\rightrightarrows} We study a sufficient condition under which a maximal monotone operator $T\colon X\tos X^*$ admits a unique maximal monotone extension to the bidual $\widetilde T\colon X^{**}\tos X^*$. We will prove that for non-linear operators this condition is equivalent to uniqueness of the extension. The central tool in our approach is the $\mathcal{S}$-function defined and studied previously by R. S. Burachik and B. F. Svaiter ["Maximal monotone operators, convex functions and a special family of enlargements", Set-Valued Analysis 10 (2002) 297--316]. For a generic operator, this function is the supremum of all convex lower semicontinuous functions which are majorized by the duality product in the graph of the operator.\par We also prove in this work that if the graph of a maximal monotone operator is convex, then this graph is an affine linear subspace.
Classification : 47H05, 49J52, 47N10
Mots-clés : Maximal monotone operators, extension, bidual, Banach spaces, Broendsted-Rockafellar property, S-function
@article{JCA_2009_16_2_JCA_2009_16_2_a5,
     author = {M. Marques Alves and B. F. Svaiter},
     title = {Maximal {Monotone} {Operators} with a {Unique} {Extension} to the {Bidual}},
     journal = {Journal of convex analysis},
     pages = {409--421},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2009},
     url = {http://geodesic.mathdoc.fr/item/JCA_2009_16_2_JCA_2009_16_2_a5/}
}
TY  - JOUR
AU  - M. Marques Alves
AU  - B. F. Svaiter
TI  - Maximal Monotone Operators with a Unique Extension to the Bidual
JO  - Journal of convex analysis
PY  - 2009
SP  - 409
EP  - 421
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2009_16_2_JCA_2009_16_2_a5/
ID  - JCA_2009_16_2_JCA_2009_16_2_a5
ER  - 
%0 Journal Article
%A M. Marques Alves
%A B. F. Svaiter
%T Maximal Monotone Operators with a Unique Extension to the Bidual
%J Journal of convex analysis
%D 2009
%P 409-421
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2009_16_2_JCA_2009_16_2_a5/
%F JCA_2009_16_2_JCA_2009_16_2_a5
M. Marques Alves; B. F. Svaiter. Maximal Monotone Operators with a Unique Extension to the Bidual. Journal of convex analysis, Tome 16 (2009) no. 2, pp. 409-421. http://geodesic.mathdoc.fr/item/JCA_2009_16_2_JCA_2009_16_2_a5/