Peak Set Crossing all the Circles
Journal of convex analysis, Tome 16 (2009) no. 2, pp. 515-521
Voir la notice de l'article provenant de la source Heldermann Verlag
Let $\Omega\subset\Bbb C^{d}$ be a circular, bounded, strictly convex domain with $C^{2}$ boundary. We construct a peak set $K\subset\partial\Omega$ which intersects all the circles in $\partial\Omega$ with the center at zero. In particular Hausdorff dimension of $K$ is at least $2d-2$.
Classification :
32A05, 32A35
Mots-clés : Homogeneous polynomials, peak set, maximum modulus set, inner function
Mots-clés : Homogeneous polynomials, peak set, maximum modulus set, inner function
@article{JCA_2009_16_2_JCA_2009_16_2_a11,
author = {P. Kot},
title = {Peak {Set} {Crossing} all the {Circles}},
journal = {Journal of convex analysis},
pages = {515--521},
publisher = {mathdoc},
volume = {16},
number = {2},
year = {2009},
url = {http://geodesic.mathdoc.fr/item/JCA_2009_16_2_JCA_2009_16_2_a11/}
}
P. Kot. Peak Set Crossing all the Circles. Journal of convex analysis, Tome 16 (2009) no. 2, pp. 515-521. http://geodesic.mathdoc.fr/item/JCA_2009_16_2_JCA_2009_16_2_a11/