Peak Set Crossing all the Circles
Journal of convex analysis, Tome 16 (2009) no. 2, pp. 515-521.

Voir la notice de l'article provenant de la source Heldermann Verlag

Let $\Omega\subset\Bbb C^{d}$ be a circular, bounded, strictly convex domain with $C^{2}$ boundary. We construct a peak set $K\subset\partial\Omega$ which intersects all the circles in $\partial\Omega$ with the center at zero. In particular Hausdorff dimension of $K$ is at least $2d-2$.
Classification : 32A05, 32A35
Mots-clés : Homogeneous polynomials, peak set, maximum modulus set, inner function
@article{JCA_2009_16_2_JCA_2009_16_2_a11,
     author = {P. Kot},
     title = {Peak {Set} {Crossing} all the {Circles}},
     journal = {Journal of convex analysis},
     pages = {515--521},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2009},
     url = {http://geodesic.mathdoc.fr/item/JCA_2009_16_2_JCA_2009_16_2_a11/}
}
TY  - JOUR
AU  - P. Kot
TI  - Peak Set Crossing all the Circles
JO  - Journal of convex analysis
PY  - 2009
SP  - 515
EP  - 521
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2009_16_2_JCA_2009_16_2_a11/
ID  - JCA_2009_16_2_JCA_2009_16_2_a11
ER  - 
%0 Journal Article
%A P. Kot
%T Peak Set Crossing all the Circles
%J Journal of convex analysis
%D 2009
%P 515-521
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2009_16_2_JCA_2009_16_2_a11/
%F JCA_2009_16_2_JCA_2009_16_2_a11
P. Kot. Peak Set Crossing all the Circles. Journal of convex analysis, Tome 16 (2009) no. 2, pp. 515-521. http://geodesic.mathdoc.fr/item/JCA_2009_16_2_JCA_2009_16_2_a11/