The Cosserat Vector in Membrane Theory: a Variational Approach
Journal of convex analysis, Tome 16 (2009) no. 2, pp. 351-365
Voir la notice de l'article provenant de la source Heldermann Verlag
In a previous article of the authors [J. Elasticity 73 (2004) 75--99] a model of nonlinear membrane was studied, where the external surface loading induces a density of bending moment. Due to the special form of the applied surface forces, the emerging Cosserat vector, resulting from the 3D-2D dimension reduction, was restricted to a class of two dimensional functions. In this paper the full 3D dependence of the Cosserat vector is analyzed via Γ-convergence techniques.
Classification :
35E99, 35M10, 49J45, 74B20, 74K15, 74K20, 74K35
Mots-clés : Dimension reduction, Gamma-convergence, relaxation, quasiconvexity, bending effect
Mots-clés : Dimension reduction, Gamma-convergence, relaxation, quasiconvexity, bending effect
@article{JCA_2009_16_2_JCA_2009_16_2_a1,
author = {G. Bouchitt\'e and I. Fonseca and M. L. Mascarenhas},
title = {The {Cosserat} {Vector} in {Membrane} {Theory:} a {Variational} {Approach}},
journal = {Journal of convex analysis},
pages = {351--365},
publisher = {mathdoc},
volume = {16},
number = {2},
year = {2009},
url = {http://geodesic.mathdoc.fr/item/JCA_2009_16_2_JCA_2009_16_2_a1/}
}
TY - JOUR AU - G. Bouchitté AU - I. Fonseca AU - M. L. Mascarenhas TI - The Cosserat Vector in Membrane Theory: a Variational Approach JO - Journal of convex analysis PY - 2009 SP - 351 EP - 365 VL - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2009_16_2_JCA_2009_16_2_a1/ ID - JCA_2009_16_2_JCA_2009_16_2_a1 ER -
%0 Journal Article %A G. Bouchitté %A I. Fonseca %A M. L. Mascarenhas %T The Cosserat Vector in Membrane Theory: a Variational Approach %J Journal of convex analysis %D 2009 %P 351-365 %V 16 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCA_2009_16_2_JCA_2009_16_2_a1/ %F JCA_2009_16_2_JCA_2009_16_2_a1
G. Bouchitté; I. Fonseca; M. L. Mascarenhas. The Cosserat Vector in Membrane Theory: a Variational Approach. Journal of convex analysis, Tome 16 (2009) no. 2, pp. 351-365. http://geodesic.mathdoc.fr/item/JCA_2009_16_2_JCA_2009_16_2_a1/