The Cosserat Vector in Membrane Theory: a Variational Approach
Journal of convex analysis, Tome 16 (2009) no. 2, pp. 351-365.

Voir la notice de l'article provenant de la source Heldermann Verlag

In a previous article of the authors [J. Elasticity 73 (2004) 75--99] a model of nonlinear membrane was studied, where the external surface loading induces a density of bending moment. Due to the special form of the applied surface forces, the emerging Cosserat vector, resulting from the 3D-2D dimension reduction, was restricted to a class of two dimensional functions. In this paper the full 3D dependence of the Cosserat vector is analyzed via Γ-convergence techniques.
Classification : 35E99, 35M10, 49J45, 74B20, 74K15, 74K20, 74K35
Mots-clés : Dimension reduction, Gamma-convergence, relaxation, quasiconvexity, bending effect
@article{JCA_2009_16_2_JCA_2009_16_2_a1,
     author = {G. Bouchitt\'e and I. Fonseca and M. L. Mascarenhas},
     title = {The {Cosserat} {Vector} in {Membrane} {Theory:} a {Variational} {Approach}},
     journal = {Journal of convex analysis},
     pages = {351--365},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2009},
     url = {http://geodesic.mathdoc.fr/item/JCA_2009_16_2_JCA_2009_16_2_a1/}
}
TY  - JOUR
AU  - G. Bouchitté
AU  - I. Fonseca
AU  - M. L. Mascarenhas
TI  - The Cosserat Vector in Membrane Theory: a Variational Approach
JO  - Journal of convex analysis
PY  - 2009
SP  - 351
EP  - 365
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2009_16_2_JCA_2009_16_2_a1/
ID  - JCA_2009_16_2_JCA_2009_16_2_a1
ER  - 
%0 Journal Article
%A G. Bouchitté
%A I. Fonseca
%A M. L. Mascarenhas
%T The Cosserat Vector in Membrane Theory: a Variational Approach
%J Journal of convex analysis
%D 2009
%P 351-365
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2009_16_2_JCA_2009_16_2_a1/
%F JCA_2009_16_2_JCA_2009_16_2_a1
G. Bouchitté; I. Fonseca; M. L. Mascarenhas. The Cosserat Vector in Membrane Theory: a Variational Approach. Journal of convex analysis, Tome 16 (2009) no. 2, pp. 351-365. http://geodesic.mathdoc.fr/item/JCA_2009_16_2_JCA_2009_16_2_a1/