Nondifferentiable Multiplier Rules for Optimization Problems with Equilibrium Constraints
Journal of convex analysis, Tome 16 (2009) no. 1, pp. 187-21
Cet article a éte moissonné depuis la source Heldermann Verlag
We consider a mathematical program with equilibrium constraints (MPEC). First we obtain a Lagrange multiplier rule based on the linear subdifferential involving equality, inequality and set constraints. Then we propose new constraint qualifications for M-stationary condition to hold. Finally we establish the Fritz John and Karush-Kuhn Tucker M-stationary necessary conditions for a nonsmooth (MPEC) based on the Michel-Penot subdifferential.
Classification :
90C30, 90C46, 49J52
Mots-clés : Optimization problems, necessary optimality conditions, constraint qualification, nonsmooth analysis
Mots-clés : Optimization problems, necessary optimality conditions, constraint qualification, nonsmooth analysis
@article{JCA_2009_16_1_JCA_2009_16_1_a9,
author = {N. Movahedian and S. Nobakhtian},
title = {Nondifferentiable {Multiplier} {Rules} for {Optimization} {Problems} with {Equilibrium} {Constraints}},
journal = {Journal of convex analysis},
pages = {187--21},
year = {2009},
volume = {16},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JCA_2009_16_1_JCA_2009_16_1_a9/}
}
TY - JOUR AU - N. Movahedian AU - S. Nobakhtian TI - Nondifferentiable Multiplier Rules for Optimization Problems with Equilibrium Constraints JO - Journal of convex analysis PY - 2009 SP - 187 EP - 21 VL - 16 IS - 1 UR - http://geodesic.mathdoc.fr/item/JCA_2009_16_1_JCA_2009_16_1_a9/ ID - JCA_2009_16_1_JCA_2009_16_1_a9 ER -
%0 Journal Article %A N. Movahedian %A S. Nobakhtian %T Nondifferentiable Multiplier Rules for Optimization Problems with Equilibrium Constraints %J Journal of convex analysis %D 2009 %P 187-21 %V 16 %N 1 %U http://geodesic.mathdoc.fr/item/JCA_2009_16_1_JCA_2009_16_1_a9/ %F JCA_2009_16_1_JCA_2009_16_1_a9
N. Movahedian; S. Nobakhtian. Nondifferentiable Multiplier Rules for Optimization Problems with Equilibrium Constraints. Journal of convex analysis, Tome 16 (2009) no. 1, pp. 187-21. http://geodesic.mathdoc.fr/item/JCA_2009_16_1_JCA_2009_16_1_a9/