A New Proof of the Maximal Monotonicity of Subdifferentials
Journal of convex analysis, Tome 16 (2009) no. 1, pp. 165-168.

Voir la notice de l'article provenant de la source Heldermann Verlag

We give a new proof based on the recent very elegant argument of M. Marques Alves and B. F. Svaiter [J. Convex Analysis 15 (2008) 345--348] that the subdifferential of a proper, convex lower semicontinuous function on a real Banach space is maximally monotone. We also show how the argument can be simplified in the reflexive case.
@article{JCA_2009_16_1_JCA_2009_16_1_a7,
     author = {S. Simons},
     title = {A {New} {Proof} of the {Maximal} {Monotonicity} of {Subdifferentials}},
     journal = {Journal of convex analysis},
     pages = {165--168},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2009},
     url = {http://geodesic.mathdoc.fr/item/JCA_2009_16_1_JCA_2009_16_1_a7/}
}
TY  - JOUR
AU  - S. Simons
TI  - A New Proof of the Maximal Monotonicity of Subdifferentials
JO  - Journal of convex analysis
PY  - 2009
SP  - 165
EP  - 168
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2009_16_1_JCA_2009_16_1_a7/
ID  - JCA_2009_16_1_JCA_2009_16_1_a7
ER  - 
%0 Journal Article
%A S. Simons
%T A New Proof of the Maximal Monotonicity of Subdifferentials
%J Journal of convex analysis
%D 2009
%P 165-168
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2009_16_1_JCA_2009_16_1_a7/
%F JCA_2009_16_1_JCA_2009_16_1_a7
S. Simons. A New Proof of the Maximal Monotonicity of Subdifferentials. Journal of convex analysis, Tome 16 (2009) no. 1, pp. 165-168. http://geodesic.mathdoc.fr/item/JCA_2009_16_1_JCA_2009_16_1_a7/