The Schur Geometrical Convexity of the Extended Mean Values
Journal of convex analysis, Tome 15 (2008) no. 4, pp. 707-718
Voir la notice de l'article provenant de la source Heldermann Verlag
We prove that the extended mean values $E(r,s;x,y)$ are Schur geometrically convex (or concave, respectively) with respect to $(x,y)\in(0,\infty)\times(0,\infty)$ if and only if $s+r\geq 0$ (or $s+r\leq 0$,respectively).
Classification :
26B25
Mots-clés : Extended mean value, Schur convex, Schur concave, Schur geometrically convex, Schur geometrically concave
Mots-clés : Extended mean value, Schur convex, Schur concave, Schur geometrically convex, Schur geometrically concave
@article{JCA_2008_15_4_JCA_2008_15_4_a3,
author = {Y. Chu and X. Zhang and G. Wang},
title = {The {Schur} {Geometrical} {Convexity} of the {Extended} {Mean} {Values}},
journal = {Journal of convex analysis},
pages = {707--718},
publisher = {mathdoc},
volume = {15},
number = {4},
year = {2008},
url = {http://geodesic.mathdoc.fr/item/JCA_2008_15_4_JCA_2008_15_4_a3/}
}
TY - JOUR AU - Y. Chu AU - X. Zhang AU - G. Wang TI - The Schur Geometrical Convexity of the Extended Mean Values JO - Journal of convex analysis PY - 2008 SP - 707 EP - 718 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2008_15_4_JCA_2008_15_4_a3/ ID - JCA_2008_15_4_JCA_2008_15_4_a3 ER -
Y. Chu; X. Zhang; G. Wang. The Schur Geometrical Convexity of the Extended Mean Values. Journal of convex analysis, Tome 15 (2008) no. 4, pp. 707-718. http://geodesic.mathdoc.fr/item/JCA_2008_15_4_JCA_2008_15_4_a3/