The Schur Geometrical Convexity of the Extended Mean Values
Journal of convex analysis, Tome 15 (2008) no. 4, pp. 707-718.

Voir la notice de l'article provenant de la source Heldermann Verlag

We prove that the extended mean values $E(r,s;x,y)$ are Schur geometrically convex (or concave, respectively) with respect to $(x,y)\in(0,\infty)\times(0,\infty)$ if and only if $s+r\geq 0$ (or $s+r\leq 0$,respectively).
Classification : 26B25
Mots-clés : Extended mean value, Schur convex, Schur concave, Schur geometrically convex, Schur geometrically concave
@article{JCA_2008_15_4_JCA_2008_15_4_a3,
     author = {Y. Chu and X. Zhang and G. Wang},
     title = {The {Schur} {Geometrical} {Convexity} of the {Extended} {Mean} {Values}},
     journal = {Journal of convex analysis},
     pages = {707--718},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2008},
     url = {http://geodesic.mathdoc.fr/item/JCA_2008_15_4_JCA_2008_15_4_a3/}
}
TY  - JOUR
AU  - Y. Chu
AU  - X. Zhang
AU  - G. Wang
TI  - The Schur Geometrical Convexity of the Extended Mean Values
JO  - Journal of convex analysis
PY  - 2008
SP  - 707
EP  - 718
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2008_15_4_JCA_2008_15_4_a3/
ID  - JCA_2008_15_4_JCA_2008_15_4_a3
ER  - 
%0 Journal Article
%A Y. Chu
%A X. Zhang
%A G. Wang
%T The Schur Geometrical Convexity of the Extended Mean Values
%J Journal of convex analysis
%D 2008
%P 707-718
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2008_15_4_JCA_2008_15_4_a3/
%F JCA_2008_15_4_JCA_2008_15_4_a3
Y. Chu; X. Zhang; G. Wang. The Schur Geometrical Convexity of the Extended Mean Values. Journal of convex analysis, Tome 15 (2008) no. 4, pp. 707-718. http://geodesic.mathdoc.fr/item/JCA_2008_15_4_JCA_2008_15_4_a3/