The Minimal Gap Between Λ2(Ω) and Λ¥(Ω) in a Class of Convex Domains
Journal of convex analysis, Tome 15 (2008) no. 3, pp. 507-521
Cet article a éte moissonné depuis la source Heldermann Verlag
We consider the minimization problem \begin{eqnarray*} \min_{\Omega\in X}\left(\Lambda_2-\Lambda_\infty\right)(\Omega), \end{eqnarray*} where $\Lambda_2(\Omega)$\ and $\Lambda_\infty(\Omega)$\ are the (square root of the) first eigenvalue of the Laplacian and the first eigenvalue of the $\infty-$Laplacian respectively. $X$ is the class of convex domains with prescribed diameter. We prove existence of a solution, and we provide several geometrical properties of minimizers.
@article{JCA_2008_15_3_JCA_2008_15_3_a4,
author = {M. Belloni and E. Oudet},
title = {The {Minimal} {Gap} {Between} {\ensuremath{\Lambda}\protect\textsubscript{2}(\ensuremath{\Omega})} and {\ensuremath{\Lambda}\protect\textsubscript{<font} {face="Symbol">{\textyen}</font>}(\ensuremath{\Omega})} in a {Class} of {Convex} {Domains}},
journal = {Journal of convex analysis},
pages = {507--521},
year = {2008},
volume = {15},
number = {3},
url = {http://geodesic.mathdoc.fr/item/JCA_2008_15_3_JCA_2008_15_3_a4/}
}
M. Belloni; E. Oudet. The Minimal Gap Between Λ2(Ω) and Λ¥(Ω) in a Class of Convex Domains. Journal of convex analysis, Tome 15 (2008) no. 3, pp. 507-521. http://geodesic.mathdoc.fr/item/JCA_2008_15_3_JCA_2008_15_3_a4/