Banach Spaces with an Infinite Number of Smooth Faces in their Unit Ball
Journal of convex analysis, Tome 15 (2008) no. 2, pp. 215-218.

Voir la notice de l'article provenant de la source Heldermann Verlag

We study Banach spaces having smooth faces in their unit ball. In particular, we show that if the unit ball of a finite dimensional Banach space has an infinite number of smooth faces then their interiors relative to the unit sphere approach the empty set in a certain way. We also show that this situation does not hold in infinite dimensions since we prove that every infinite dimensional Banach space can be equivalently renormed to have infinitely many smooth faces with interior relative to the unit sphere of the same "size". This fact characterizes having infinite algebraic dimension.
Classification : 46B20, 46B07, 46A35
Mots-clés : Smooth face, interior relative to the unit sphere, Hausdorff metric
@article{JCA_2008_15_2_JCA_2008_15_2_a1,
     author = {F. J. Garc{\'\i}a-Pacheco},
     title = {Banach {Spaces} with an {Infinite} {Number} of {Smooth} {Faces} in their {Unit} {Ball}},
     journal = {Journal of convex analysis},
     pages = {215--218},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2008},
     url = {http://geodesic.mathdoc.fr/item/JCA_2008_15_2_JCA_2008_15_2_a1/}
}
TY  - JOUR
AU  - F. J. García-Pacheco
TI  - Banach Spaces with an Infinite Number of Smooth Faces in their Unit Ball
JO  - Journal of convex analysis
PY  - 2008
SP  - 215
EP  - 218
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2008_15_2_JCA_2008_15_2_a1/
ID  - JCA_2008_15_2_JCA_2008_15_2_a1
ER  - 
%0 Journal Article
%A F. J. García-Pacheco
%T Banach Spaces with an Infinite Number of Smooth Faces in their Unit Ball
%J Journal of convex analysis
%D 2008
%P 215-218
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2008_15_2_JCA_2008_15_2_a1/
%F JCA_2008_15_2_JCA_2008_15_2_a1
F. J. García-Pacheco. Banach Spaces with an Infinite Number of Smooth Faces in their Unit Ball. Journal of convex analysis, Tome 15 (2008) no. 2, pp. 215-218. http://geodesic.mathdoc.fr/item/JCA_2008_15_2_JCA_2008_15_2_a1/