Self-Dual Smoothing of Convex and Saddle Functions
Journal of convex analysis, Tome 15 (2008) no. 1, pp. 179-19.

Voir la notice de l'article provenant de la source Heldermann Verlag

It is shown that any convex function can be approximated by a family of differentiable with Lipschitz continuous gradient and strongly convex approximates in a "self-dual" way: the conjugate of each approximate is the approximate of the conjugate of the original function. The approximation technique extends to saddle functions, and is self-dual with respect to saddle function conjugacy and also partial conjugacy that relates saddle functions to convex functions.
Classification : 52A41, 90C25, 90C59, 90C46, 26B25
Mots-clés : Convex functions, approximation, Moreau envelopes, duality, saddle functions
@article{JCA_2008_15_1_JCA_2008_15_1_a11,
     author = {R. Goebel},
     title = {Self-Dual {Smoothing} of {Convex} and {Saddle} {Functions}},
     journal = {Journal of convex analysis},
     pages = {179--19},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2008},
     url = {http://geodesic.mathdoc.fr/item/JCA_2008_15_1_JCA_2008_15_1_a11/}
}
TY  - JOUR
AU  - R. Goebel
TI  - Self-Dual Smoothing of Convex and Saddle Functions
JO  - Journal of convex analysis
PY  - 2008
SP  - 179
EP  - 19
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2008_15_1_JCA_2008_15_1_a11/
ID  - JCA_2008_15_1_JCA_2008_15_1_a11
ER  - 
%0 Journal Article
%A R. Goebel
%T Self-Dual Smoothing of Convex and Saddle Functions
%J Journal of convex analysis
%D 2008
%P 179-19
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2008_15_1_JCA_2008_15_1_a11/
%F JCA_2008_15_1_JCA_2008_15_1_a11
R. Goebel. Self-Dual Smoothing of Convex and Saddle Functions. Journal of convex analysis, Tome 15 (2008) no. 1, pp. 179-19. http://geodesic.mathdoc.fr/item/JCA_2008_15_1_JCA_2008_15_1_a11/