Linear Operators on Vector-Valued Function Spaces with Mackey Topologies
Journal of convex analysis, Tome 15 (2008) no. 1, pp. 165-178.

Voir la notice de l'article provenant de la source Heldermann Verlag

\newcommand{\si}{\sigma} \newcommand{\Si}{\Sigma} \newcommand{\om}{\omega} \newcommand{\Om}{\Omega} \newcommand{\ps}{\rightarrow} \newcommand{\wf}{\widetilde{f}} \newcommand{\wg}{\widetilde{g}} \newcommand{\cl}{{\cal L}} Let $\,E\,$ be an ideal of $\,L^0\,$ over a $\,\sigma$-finite measure space $\,(\Om,\Si,\mu)\,$ and let $E'$ be the K\"othe dual of $\,E$. Let $\,(X,\|\cdot\|_X)\,$ be a real Banach space, and $\,X^*\,$ the Banach dual of $\,X$. Let $\,E(X)\,$ be a subspace of the space $\,L^0(X)\,$ of $\mu$-equivalence classes of all strongly $\Si$-measurable function $\,f:\Om\ps X$, and consisting of all those $\,f\in L^0(X)\,$ for which the scalar function $\wf$, defined by $\,\wf(\om)=\|f(\om)\|_X\,$ for $\,\om\in\Om$, belongs to $E$. Assume that a Banach space $\,X\,$ is an Asplund space. It is shown that a subset $C$ of $\,E'(X^*)\,$ is relatively $\,\si(E'(X^*),E(X))$-compact iff the set $\,\{\wg:g\in E'(X^*)\}\,$ in $E'$ is relatively $\,\si(E',E)$-compact. We consider the topology $\,\overline{\tau(E,E')}\,$ on $E(X)$ associated with the Mackey topology $\,\tau(E,E')\,$ on $E$. It is shown that $\,\overline{\tau(E,E')}\,$ is strongly Mackey topology; hence $\,\overline{\tau(E,E')}\,$ coincides with the Mackey topology $\,\tau(E(X),E'(X^*))$. Moreover, $\,E'(X^*)\,$ is $\,\si(E'(X^*), E(X))$-sequentially complete whenever $E'$ is perfect. We examine the space $\cl_\tau(E(X),Y)$ of all $\,(\tau(E(X),E'(X^*)),\|\cdot\|_Y)$-continuous linear operators from $\,E(X)\,$ to a Banach space $\,(Y,\|\cdot\|_Y)$, equipped with the weak operator topology (briefly WOT) and the strong operator topology (briefly SOT). It is shown that if $E$ is perfect, then $\cl_\tau(E(X),Y)$ is WOT-sequentially complete, and every SOT-compact subset of $\cl_\tau(E(X),Y)$ is $\,(\tau(E(X),E'(X^*)),\|\cdot\|_Y)$-equicontinuous. Moreover, a Vitali-Hahn-Saks type theorem for $\cl_\tau(E(X),Y)$ is obtained.
Classification : 46E40, 46E30, 46A20, 46A70
Mots-clés : Vector-valued function spaces, Mackey topologies, strongly Mackey topologies, weak compactness, Radon-Nikodym property, Asplund spaces, sequential completeness, convex compactness property, weak operator topology, strong operator topology, linear operator
@article{JCA_2008_15_1_JCA_2008_15_1_a10,
     author = {M. Nowak},
     title = {Linear {Operators} on {Vector-Valued} {Function} {Spaces} with {Mackey} {Topologies}},
     journal = {Journal of convex analysis},
     pages = {165--178},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2008},
     url = {http://geodesic.mathdoc.fr/item/JCA_2008_15_1_JCA_2008_15_1_a10/}
}
TY  - JOUR
AU  - M. Nowak
TI  - Linear Operators on Vector-Valued Function Spaces with Mackey Topologies
JO  - Journal of convex analysis
PY  - 2008
SP  - 165
EP  - 178
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2008_15_1_JCA_2008_15_1_a10/
ID  - JCA_2008_15_1_JCA_2008_15_1_a10
ER  - 
%0 Journal Article
%A M. Nowak
%T Linear Operators on Vector-Valued Function Spaces with Mackey Topologies
%J Journal of convex analysis
%D 2008
%P 165-178
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2008_15_1_JCA_2008_15_1_a10/
%F JCA_2008_15_1_JCA_2008_15_1_a10
M. Nowak. Linear Operators on Vector-Valued Function Spaces with Mackey Topologies. Journal of convex analysis, Tome 15 (2008) no. 1, pp. 165-178. http://geodesic.mathdoc.fr/item/JCA_2008_15_1_JCA_2008_15_1_a10/