A Regularity Result in a Shape Optimization Problem with Perimeter
Journal of convex analysis, Tome 14 (2007) no. 4, pp. 785-806
Voir la notice de l'article provenant de la source Heldermann Verlag
We consider optimal shapes of the functional $$\mathcal{E}_\lambda(\Omega) = J(\Omega) + P(\Omega) + \lambda ||\Omega| - m|$$ among all the measurable subsets $\Omega$ of a given open bounded domain $D \subset \mathbf{R}^d$ where $J(\Omega)$ is some Dirichlet energy associated with $\Omega$, $P(\Omega)$ and $|\Omega|$ being respectively the perimeter and the Lebesgue measure of $\Omega$. We prove here that for some optimal shape, the state function associated with the Dirichlet energy is Lipschitz-continuous. Then we deduce the same regularity properties for the boundary of the optimal shape as in the pure isoperimetric problem (case $J \equiv 0$). We also consider the minimization of $\mathcal{E}_0$ with Lebesgue measure constraint $|\Omega| = 0$.
@article{JCA_2007_14_4_JCA_2007_14_4_a5,
author = {N. Landais},
title = {A {Regularity} {Result} in a {Shape} {Optimization} {Problem} with {Perimeter}},
journal = {Journal of convex analysis},
pages = {785--806},
publisher = {mathdoc},
volume = {14},
number = {4},
year = {2007},
url = {http://geodesic.mathdoc.fr/item/JCA_2007_14_4_JCA_2007_14_4_a5/}
}
N. Landais. A Regularity Result in a Shape Optimization Problem with Perimeter. Journal of convex analysis, Tome 14 (2007) no. 4, pp. 785-806. http://geodesic.mathdoc.fr/item/JCA_2007_14_4_JCA_2007_14_4_a5/