Differential Inclusions in SBV0(Ω) and Applications to the Calculus of Variations
Journal of convex analysis, Tome 14 (2007) no. 3, pp. 465-477.

Voir la notice de l'article provenant de la source Heldermann Verlag

We study necessary and sufficient conditions for the existence of solutions in $SBV_0(\Omega)$ of a variational problem involving only bulk energy. Related to that we study the problem of finding $u \in SBV_0(\Omega)$ such that $$\nabla u (x)\in E,\text{ a.e. in } \Omega,$$ subject to the condition $$\int \nabla u = \zeta_0 |\Omega|,$$ where $E\subseteq \mathbb{R}^N$ is a given set and $\zeta_0 \in $ int co $E$ is prescribed.
@article{JCA_2007_14_3_JCA_2007_14_3_a1,
     author = {J. Matias},
     title = {Differential {Inclusions} in {SBV\protect\textsubscript{0}(\ensuremath{\Omega})} and {Applications} to the {Calculus} of {Variations}},
     journal = {Journal of convex analysis},
     pages = {465--477},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2007},
     url = {http://geodesic.mathdoc.fr/item/JCA_2007_14_3_JCA_2007_14_3_a1/}
}
TY  - JOUR
AU  - J. Matias
TI  - Differential Inclusions in SBV0(Ω) and Applications to the Calculus of Variations
JO  - Journal of convex analysis
PY  - 2007
SP  - 465
EP  - 477
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2007_14_3_JCA_2007_14_3_a1/
ID  - JCA_2007_14_3_JCA_2007_14_3_a1
ER  - 
%0 Journal Article
%A J. Matias
%T Differential Inclusions in SBV0(Ω) and Applications to the Calculus of Variations
%J Journal of convex analysis
%D 2007
%P 465-477
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2007_14_3_JCA_2007_14_3_a1/
%F JCA_2007_14_3_JCA_2007_14_3_a1
J. Matias. Differential Inclusions in SBV0(Ω) and Applications to the Calculus of Variations. Journal of convex analysis, Tome 14 (2007) no. 3, pp. 465-477. http://geodesic.mathdoc.fr/item/JCA_2007_14_3_JCA_2007_14_3_a1/