Direction of Movement of the Element of Minimal Norm in a Moving Convex Set
Journal of convex analysis, Tome 14 (2007) no. 3, pp. 455-463
Cet article a éte moissonné depuis la source Heldermann Verlag
We show that if $K$ is a nonempty closed convex subset of a real Hilbert space $H$, $e$ is a non-zero arbitrary vector in $H$ and for each $t\in \mathbb{R}$, $z(t)$ is the closest point in $K + te$ to the origin, then the angle $z(t)$ makes with $e$ is a decreasing function of $t$ while $z(t)\neq 0$, and the inner product of $z(t)$ with $e$ is increasing.
Classification :
46C05, 47H99, 41A65
Mots-clés : Moving convex set, nearest point projection
Mots-clés : Moving convex set, nearest point projection
@article{JCA_2007_14_3_JCA_2007_14_3_a0,
author = {R. Choudhary},
title = {Direction of {Movement} of the {Element} of {Minimal} {Norm} in a {Moving} {Convex} {Set}},
journal = {Journal of convex analysis},
pages = {455--463},
year = {2007},
volume = {14},
number = {3},
url = {http://geodesic.mathdoc.fr/item/JCA_2007_14_3_JCA_2007_14_3_a0/}
}
R. Choudhary. Direction of Movement of the Element of Minimal Norm in a Moving Convex Set. Journal of convex analysis, Tome 14 (2007) no. 3, pp. 455-463. http://geodesic.mathdoc.fr/item/JCA_2007_14_3_JCA_2007_14_3_a0/