Multiscale Homogenization of Convex Functionals with Discontinuous Integrand
Journal of convex analysis, Tome 14 (2007) no. 1, pp. 205-226.

Voir la notice de l'article provenant de la source Heldermann Verlag

\newcommand{\e}{\varepsilon} This article is devoted to obtain the $\Gamma$-limit, as $\e$ tends to zero, of the family of functionals \begin{equation*} u\mapsto\int_{\Omega}f\Bigl(x,\frac{x}{\e}, \ldots, \frac{x}{\e^n}, \nabla u(x)\Bigr)dx , \end{equation*} where $f=f(x, y^1, \ldots, y^n, z)$ is periodic in $y^1, \ldots, y^n$, convex in $z$ and satisfies a very weak regularity assumption with respect to $x, y^1, \ldots, y^n$. We approach the problem using the multiscale Young measures.
Classification : 28A20, 35B27, 35B40, 74Q05
Mots-clés : convexity, discontinuous integrands, iterated homogenization, periodicity, multiscale convergence, Young measures, Gamma-convergence
@article{JCA_2007_14_1_JCA_2007_14_1_a14,
     author = {M. Barchiesi},
     title = {Multiscale {Homogenization} of {Convex} {Functionals} with {Discontinuous} {Integrand}},
     journal = {Journal of convex analysis},
     pages = {205--226},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2007},
     url = {http://geodesic.mathdoc.fr/item/JCA_2007_14_1_JCA_2007_14_1_a14/}
}
TY  - JOUR
AU  - M. Barchiesi
TI  - Multiscale Homogenization of Convex Functionals with Discontinuous Integrand
JO  - Journal of convex analysis
PY  - 2007
SP  - 205
EP  - 226
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2007_14_1_JCA_2007_14_1_a14/
ID  - JCA_2007_14_1_JCA_2007_14_1_a14
ER  - 
%0 Journal Article
%A M. Barchiesi
%T Multiscale Homogenization of Convex Functionals with Discontinuous Integrand
%J Journal of convex analysis
%D 2007
%P 205-226
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2007_14_1_JCA_2007_14_1_a14/
%F JCA_2007_14_1_JCA_2007_14_1_a14
M. Barchiesi. Multiscale Homogenization of Convex Functionals with Discontinuous Integrand. Journal of convex analysis, Tome 14 (2007) no. 1, pp. 205-226. http://geodesic.mathdoc.fr/item/JCA_2007_14_1_JCA_2007_14_1_a14/