Convergence of the Projected Surrogate Constraints Method for the Linear Split Feasibility Problems
Journal of convex analysis, Tome 14 (2007) no. 1, pp. 169-183.

Voir la notice de l'article provenant de la source Heldermann Verlag

The surrogate constraints method (SC-method) for linear feasibility problems (LFP) is an important tool in convex optimization, especially in large scale optimization. The classical version of the SC-method converges to a solution if the LFP is feasible [see K. Yang and K. G. Murty, J. Optim. Theory Appl. 72 (1992) 163--185]. Unfortunately, in applications the LFP is often infeasible. Such a situation occurs in computer tomography and in intensity modulated radiation therapy which can be modelled as LFP [see C. Byrne, Inverse Problems 18 (2002) 441--453; or Y. Censor, D. Gordon and R. Gordon, Parallel Computing 27 (2001) 777--808; or H. W. Hamacher and K.-H. Küfer, Discrete Applied Mathematics 118 (2002) 145--161; or Y. Xiao, D. Michalski, Y. Censor and J. M. Galvin, Physics in Medicine and Biology 49 (2004) 3227--3245]. In this case one can apply the simultaneous projection method (SP-method) [see A. Auslender, "Optimisation, Méthodes Numériques", Mason, Paris 1983; or D. Butnariu and Y. Censor, Int. J. Comp. Math. 34 (1990) 79--94; A. R. De Pierro and A. N. Iusem, Linear Algebra and Applications 64 (1985) 243--252] which is actually a short step version of a special case of the SC-method [see A. Cegielski, "Projection methods for the linear split feasibility problems", submitted]. The SP-method converges to a solution if the LFP is feasible and to an approximate solution in other case. Because of long steps, the SC-method converges faster than the SP-method if the LFP is feasible. Unfortunately, the SC-method diverges if the problem is infeasible.
@article{JCA_2007_14_1_JCA_2007_14_1_a12,
     author = {A. Cegielski},
     title = {Convergence of the {Projected} {Surrogate} {Constraints} {Method} for the {Linear} {Split} {Feasibility} {Problems}},
     journal = {Journal of convex analysis},
     pages = {169--183},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2007},
     url = {http://geodesic.mathdoc.fr/item/JCA_2007_14_1_JCA_2007_14_1_a12/}
}
TY  - JOUR
AU  - A. Cegielski
TI  - Convergence of the Projected Surrogate Constraints Method for the Linear Split Feasibility Problems
JO  - Journal of convex analysis
PY  - 2007
SP  - 169
EP  - 183
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2007_14_1_JCA_2007_14_1_a12/
ID  - JCA_2007_14_1_JCA_2007_14_1_a12
ER  - 
%0 Journal Article
%A A. Cegielski
%T Convergence of the Projected Surrogate Constraints Method for the Linear Split Feasibility Problems
%J Journal of convex analysis
%D 2007
%P 169-183
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2007_14_1_JCA_2007_14_1_a12/
%F JCA_2007_14_1_JCA_2007_14_1_a12
A. Cegielski. Convergence of the Projected Surrogate Constraints Method for the Linear Split Feasibility Problems. Journal of convex analysis, Tome 14 (2007) no. 1, pp. 169-183. http://geodesic.mathdoc.fr/item/JCA_2007_14_1_JCA_2007_14_1_a12/