Linear Structures in the Set of Norm-Attaining Functionals on a Banach Space
Journal of convex analysis, Tome 13 (2006) no. 3, pp. 489-497.

Voir la notice de l'article provenant de la source Heldermann Verlag

We show, among other results, that if the unit ball of the dual of a Banach space X is w*-sequentially compact, the set of norm-attaining functionals contains a separable norm closed subspace M if and only if the dual M* of M is the canonical quotient of X. We provide examples of spaces which cannot be renormed in such a way that the set of norm-attaining functionals become a linear space.
Classification : 46B20
Mots-clés : Lineability, norm attaining functionals
@article{JCA_2006_13_3_JCA_2006_13_3_a2,
     author = {P. Bandyopadhyay and G. Godefroy},
     title = {Linear {Structures} in the {Set} of {Norm-Attaining} {Functionals} on a {Banach} {Space}},
     journal = {Journal of convex analysis},
     pages = {489--497},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2006},
     url = {http://geodesic.mathdoc.fr/item/JCA_2006_13_3_JCA_2006_13_3_a2/}
}
TY  - JOUR
AU  - P. Bandyopadhyay
AU  - G. Godefroy
TI  - Linear Structures in the Set of Norm-Attaining Functionals on a Banach Space
JO  - Journal of convex analysis
PY  - 2006
SP  - 489
EP  - 497
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2006_13_3_JCA_2006_13_3_a2/
ID  - JCA_2006_13_3_JCA_2006_13_3_a2
ER  - 
%0 Journal Article
%A P. Bandyopadhyay
%A G. Godefroy
%T Linear Structures in the Set of Norm-Attaining Functionals on a Banach Space
%J Journal of convex analysis
%D 2006
%P 489-497
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2006_13_3_JCA_2006_13_3_a2/
%F JCA_2006_13_3_JCA_2006_13_3_a2
P. Bandyopadhyay; G. Godefroy. Linear Structures in the Set of Norm-Attaining Functionals on a Banach Space. Journal of convex analysis, Tome 13 (2006) no. 3, pp. 489-497. http://geodesic.mathdoc.fr/item/JCA_2006_13_3_JCA_2006_13_3_a2/