The Bilateral Minimal Time Function
Journal of convex analysis, Tome 13 (2006) no. 1, pp. 61-8.

Voir la notice de l'article provenant de la source Heldermann Verlag

We study the minimal time function as a function of two variables (the initial and the terminal points). This function, called the "bilateral minimal time function", plays a central role in the study of the Hamilton-Jacobi equation of minimal control in a domain which contains the target set, as shown in a recent article of F. H. Clarke and the author [J. Convex Analysis 11 (2004) 413--436]. We study the regularity of the function, and characterize it as the unique (viscosity) solution of partial Hamilton-Jacobi equations with certain boundary conditions.
Mots-clés : Minimal time function, Hamilton-Jacobi equations, viscosity solutions, regularity of value functions, nonsmooth analysis, proximal analysis
@article{JCA_2006_13_1_JCA_2006_13_1_a4,
     author = {C. Nour},
     title = {The {Bilateral} {Minimal} {Time} {Function}},
     journal = {Journal of convex analysis},
     pages = {61--8},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2006},
     url = {http://geodesic.mathdoc.fr/item/JCA_2006_13_1_JCA_2006_13_1_a4/}
}
TY  - JOUR
AU  - C. Nour
TI  - The Bilateral Minimal Time Function
JO  - Journal of convex analysis
PY  - 2006
SP  - 61
EP  - 8
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2006_13_1_JCA_2006_13_1_a4/
ID  - JCA_2006_13_1_JCA_2006_13_1_a4
ER  - 
%0 Journal Article
%A C. Nour
%T The Bilateral Minimal Time Function
%J Journal of convex analysis
%D 2006
%P 61-8
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2006_13_1_JCA_2006_13_1_a4/
%F JCA_2006_13_1_JCA_2006_13_1_a4
C. Nour. The Bilateral Minimal Time Function. Journal of convex analysis, Tome 13 (2006) no. 1, pp. 61-8. http://geodesic.mathdoc.fr/item/JCA_2006_13_1_JCA_2006_13_1_a4/