On Young Measures Controlling Discontinuous Functions
Journal of convex analysis, Tome 13 (2006) no. 1, pp. 177-192.

Voir la notice de l'article provenant de la source Heldermann Verlag

We obtain a version of Young's Theorem, where Young-like measures can control discontinuous functions. It determines the weak limit of $\{ f(u^{\nu})\}$ where $f$ is a (possibly) discontinuous scalar function, while $\{u^{\nu}\}$ is a sequence of measurable functions which satisfies tightness condition.
Classification : 49J10, 49J45
Mots-clés : Young measures, weak convergence, discontinuous functions
@article{JCA_2006_13_1_JCA_2006_13_1_a11,
     author = {A. Kalamajska},
     title = {On {Young} {Measures} {Controlling} {Discontinuous} {Functions}},
     journal = {Journal of convex analysis},
     pages = {177--192},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2006},
     url = {http://geodesic.mathdoc.fr/item/JCA_2006_13_1_JCA_2006_13_1_a11/}
}
TY  - JOUR
AU  - A. Kalamajska
TI  - On Young Measures Controlling Discontinuous Functions
JO  - Journal of convex analysis
PY  - 2006
SP  - 177
EP  - 192
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2006_13_1_JCA_2006_13_1_a11/
ID  - JCA_2006_13_1_JCA_2006_13_1_a11
ER  - 
%0 Journal Article
%A A. Kalamajska
%T On Young Measures Controlling Discontinuous Functions
%J Journal of convex analysis
%D 2006
%P 177-192
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2006_13_1_JCA_2006_13_1_a11/
%F JCA_2006_13_1_JCA_2006_13_1_a11
A. Kalamajska. On Young Measures Controlling Discontinuous Functions. Journal of convex analysis, Tome 13 (2006) no. 1, pp. 177-192. http://geodesic.mathdoc.fr/item/JCA_2006_13_1_JCA_2006_13_1_a11/