Γ-Convergence for the Irrigation Problem
Journal of convex analysis, Tome 12 (2005) no. 1, pp. 145-158
Cet article a éte moissonné depuis la source Heldermann Verlag
We study the asymptotics of the functional $F(\gamma)=\int f(x) d_\gamma(x)^pdx$, where $d_\gamma$ is the distance function to $\gamma$, among all connected compact sets $\gamma$ of given length, when the prescribed length tends to infinity. After properly scaling, we prove the existence of a $\Gamma$-limit in the space of probability measures, thus retrieving information on the asymptotics of minimal sequences.
@article{JCA_2005_12_1_JCA_2005_12_1_a9,
author = {S. J. N. Mosconi and P. Tilli},
title = {\ensuremath{\Gamma}-Convergence for the {Irrigation} {Problem}},
journal = {Journal of convex analysis},
pages = {145--158},
year = {2005},
volume = {12},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JCA_2005_12_1_JCA_2005_12_1_a9/}
}
S. J. N. Mosconi; P. Tilli. Γ-Convergence for the Irrigation Problem. Journal of convex analysis, Tome 12 (2005) no. 1, pp. 145-158. http://geodesic.mathdoc.fr/item/JCA_2005_12_1_JCA_2005_12_1_a9/