Γ-Convergence for the Irrigation Problem
Journal of convex analysis, Tome 12 (2005) no. 1, pp. 145-158.

Voir la notice de l'article provenant de la source Heldermann Verlag

We study the asymptotics of the functional $F(\gamma)=\int f(x) d_\gamma(x)^pdx$, where $d_\gamma$ is the distance function to $\gamma$, among all connected compact sets $\gamma$ of given length, when the prescribed length tends to infinity. After properly scaling, we prove the existence of a $\Gamma$-limit in the space of probability measures, thus retrieving information on the asymptotics of minimal sequences.
@article{JCA_2005_12_1_JCA_2005_12_1_a9,
     author = {S. J. N. Mosconi and P. Tilli},
     title = {\ensuremath{\Gamma}-Convergence for the {Irrigation} {Problem}},
     journal = {Journal of convex analysis},
     pages = {145--158},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2005},
     url = {http://geodesic.mathdoc.fr/item/JCA_2005_12_1_JCA_2005_12_1_a9/}
}
TY  - JOUR
AU  - S. J. N. Mosconi
AU  - P. Tilli
TI  - Γ-Convergence for the Irrigation Problem
JO  - Journal of convex analysis
PY  - 2005
SP  - 145
EP  - 158
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2005_12_1_JCA_2005_12_1_a9/
ID  - JCA_2005_12_1_JCA_2005_12_1_a9
ER  - 
%0 Journal Article
%A S. J. N. Mosconi
%A P. Tilli
%T Γ-Convergence for the Irrigation Problem
%J Journal of convex analysis
%D 2005
%P 145-158
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2005_12_1_JCA_2005_12_1_a9/
%F JCA_2005_12_1_JCA_2005_12_1_a9
S. J. N. Mosconi; P. Tilli. Γ-Convergence for the Irrigation Problem. Journal of convex analysis, Tome 12 (2005) no. 1, pp. 145-158. http://geodesic.mathdoc.fr/item/JCA_2005_12_1_JCA_2005_12_1_a9/