Homogenization of Changing-Type Evolution Equations
Journal of convex analysis, Tome 12 (2005) no. 1, pp. 221-237
Voir la notice de l'article provenant de la source Heldermann Verlag
\newcommand{\eps}{\varepsilon} We study the homogenization of the linear equation $$ R(\eps^{-1}x){\partial u_\eps \over\partial t}- \textrm{div} (a(\eps^{-1}x) \cdot \nabla u_\eps) = f\ , $$ with appropriate initial/final conditions, where $R$ is a measurable bounded periodic function and $a$ is a bounded uniformly elliptic matrix, whose coefficients $a_{ij}$ are measurable periodic functions. \\ Since we admit that $R$ may vanish and change sign, the usual compactness of the solutions in $L^2$ may not hold if the mean value of $R$ is zero.
@article{JCA_2005_12_1_JCA_2005_12_1_a15,
author = {M. Amar and A. Dall'Aglio and F. Paronetto},
title = {Homogenization of {Changing-Type} {Evolution} {Equations}},
journal = {Journal of convex analysis},
pages = {221--237},
publisher = {mathdoc},
volume = {12},
number = {1},
year = {2005},
url = {http://geodesic.mathdoc.fr/item/JCA_2005_12_1_JCA_2005_12_1_a15/}
}
TY - JOUR AU - M. Amar AU - A. Dall'Aglio AU - F. Paronetto TI - Homogenization of Changing-Type Evolution Equations JO - Journal of convex analysis PY - 2005 SP - 221 EP - 237 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2005_12_1_JCA_2005_12_1_a15/ ID - JCA_2005_12_1_JCA_2005_12_1_a15 ER -
M. Amar; A. Dall'Aglio; F. Paronetto. Homogenization of Changing-Type Evolution Equations. Journal of convex analysis, Tome 12 (2005) no. 1, pp. 221-237. http://geodesic.mathdoc.fr/item/JCA_2005_12_1_JCA_2005_12_1_a15/