Homogenization of Changing-Type Evolution Equations
Journal of convex analysis, Tome 12 (2005) no. 1, pp. 221-237.

Voir la notice de l'article provenant de la source Heldermann Verlag

\newcommand{\eps}{\varepsilon} We study the homogenization of the linear equation $$ R(\eps^{-1}x){\partial u_\eps \over\partial t}- \textrm{div} (a(\eps^{-1}x) \cdot \nabla u_\eps) = f\ , $$ with appropriate initial/final conditions, where $R$ is a measurable bounded periodic function and $a$ is a bounded uniformly elliptic matrix, whose coefficients $a_{ij}$ are measurable periodic functions. \\ Since we admit that $R$ may vanish and change sign, the usual compactness of the solutions in $L^2$ may not hold if the mean value of $R$ is zero.
@article{JCA_2005_12_1_JCA_2005_12_1_a15,
     author = {M. Amar and A. Dall'Aglio and F. Paronetto},
     title = {Homogenization of {Changing-Type} {Evolution} {Equations}},
     journal = {Journal of convex analysis},
     pages = {221--237},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2005},
     url = {http://geodesic.mathdoc.fr/item/JCA_2005_12_1_JCA_2005_12_1_a15/}
}
TY  - JOUR
AU  - M. Amar
AU  - A. Dall'Aglio
AU  - F. Paronetto
TI  - Homogenization of Changing-Type Evolution Equations
JO  - Journal of convex analysis
PY  - 2005
SP  - 221
EP  - 237
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2005_12_1_JCA_2005_12_1_a15/
ID  - JCA_2005_12_1_JCA_2005_12_1_a15
ER  - 
%0 Journal Article
%A M. Amar
%A A. Dall'Aglio
%A F. Paronetto
%T Homogenization of Changing-Type Evolution Equations
%J Journal of convex analysis
%D 2005
%P 221-237
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2005_12_1_JCA_2005_12_1_a15/
%F JCA_2005_12_1_JCA_2005_12_1_a15
M. Amar; A. Dall'Aglio; F. Paronetto. Homogenization of Changing-Type Evolution Equations. Journal of convex analysis, Tome 12 (2005) no. 1, pp. 221-237. http://geodesic.mathdoc.fr/item/JCA_2005_12_1_JCA_2005_12_1_a15/