On the Weak* Convergence of Subdifferentials of Convex Functions
Journal of convex analysis, Tome 12 (2005) no. 1, pp. 213-219.

Voir la notice de l'article provenant de la source Heldermann Verlag

Let us assume that a sequence $\{ f_{n} \}_{n=1}^{\infty }$ of proper lower semicontinuous convex functions is bounded on some open subset of a weakly compactly generated Banach space. It is shown that if $\{ f_{n} \}_{n=1}^{\infty }$ is a Mosco converging sequence, then for every subgradient $x^*$ of $f$ at $x$ there are subgradients $x^{*}_{n}\in \partial f_{n}(x_{n})$ such that $\{ x^{*}_{n} \}_{n=1}^{\infty }$ is weakly$^*$ converging to $x^*$.
Classification : 49J52
Mots-clés : Subdifferentials, convex function, Attouch's theorem
@article{JCA_2005_12_1_JCA_2005_12_1_a14,
     author = {D. Zagrodny},
     title = {On the {Weak*} {Convergence} of {Subdifferentials} of {Convex} {Functions}},
     journal = {Journal of convex analysis},
     pages = {213--219},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2005},
     url = {http://geodesic.mathdoc.fr/item/JCA_2005_12_1_JCA_2005_12_1_a14/}
}
TY  - JOUR
AU  - D. Zagrodny
TI  - On the Weak* Convergence of Subdifferentials of Convex Functions
JO  - Journal of convex analysis
PY  - 2005
SP  - 213
EP  - 219
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2005_12_1_JCA_2005_12_1_a14/
ID  - JCA_2005_12_1_JCA_2005_12_1_a14
ER  - 
%0 Journal Article
%A D. Zagrodny
%T On the Weak* Convergence of Subdifferentials of Convex Functions
%J Journal of convex analysis
%D 2005
%P 213-219
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2005_12_1_JCA_2005_12_1_a14/
%F JCA_2005_12_1_JCA_2005_12_1_a14
D. Zagrodny. On the Weak* Convergence of Subdifferentials of Convex Functions. Journal of convex analysis, Tome 12 (2005) no. 1, pp. 213-219. http://geodesic.mathdoc.fr/item/JCA_2005_12_1_JCA_2005_12_1_a14/