Closing the Duality Gap in Linear Vector Optimization
Journal of convex analysis, Tome 11 (2004) no. 1, pp. 163-178.

Voir la notice de l'article provenant de la source Heldermann Verlag

Using a set-valued dual cost function we give a new approach to duality theory for linear vector optimization problems. We develop the theory very close to the scalar case. Especially, in contrast to known results, we avoid the appearance of a duality gap in case of b = 0 . Examples are given.
Classification : 90C29, 90C46, 90C05
Mots-clés : set-valued optimization, duality, linear multicriteria optimization
@article{JCA_2004_11_1_JCA_2004_11_1_a10,
     author = {A. H. Hamel and F. Heyde and A. L\"ohne and Ch. Tammer and K. Winkler},
     title = {Closing the {Duality} {Gap} in {Linear} {Vector} {Optimization}},
     journal = {Journal of convex analysis},
     pages = {163--178},
     publisher = {mathdoc},
     volume = {11},
     number = {1},
     year = {2004},
     url = {http://geodesic.mathdoc.fr/item/JCA_2004_11_1_JCA_2004_11_1_a10/}
}
TY  - JOUR
AU  - A. H. Hamel
AU  - F. Heyde
AU  - A. Löhne
AU  - Ch. Tammer
AU  - K. Winkler
TI  - Closing the Duality Gap in Linear Vector Optimization
JO  - Journal of convex analysis
PY  - 2004
SP  - 163
EP  - 178
VL  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2004_11_1_JCA_2004_11_1_a10/
ID  - JCA_2004_11_1_JCA_2004_11_1_a10
ER  - 
%0 Journal Article
%A A. H. Hamel
%A F. Heyde
%A A. Löhne
%A Ch. Tammer
%A K. Winkler
%T Closing the Duality Gap in Linear Vector Optimization
%J Journal of convex analysis
%D 2004
%P 163-178
%V 11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2004_11_1_JCA_2004_11_1_a10/
%F JCA_2004_11_1_JCA_2004_11_1_a10
A. H. Hamel; F. Heyde; A. Löhne; Ch. Tammer; K. Winkler. Closing the Duality Gap in Linear Vector Optimization. Journal of convex analysis, Tome 11 (2004) no. 1, pp. 163-178. http://geodesic.mathdoc.fr/item/JCA_2004_11_1_JCA_2004_11_1_a10/