Lagrangian Manifolds, Viscosity Solutions and Maslov Index
Journal of convex analysis, Tome 9 (2002) no. 1, pp. 185-224.

Voir la notice de l'article provenant de la source Heldermann Verlag

Let $M$ be a Lagrangian manifold, let the 1-form $pdx$ be globally exact on $M$ and let $S(x,p)$ be defined by $dS=pdx$ on $M.$ Let $H(x,p)$ be convex in $p$ for all $x$ and vanish on $M$. Let $V(x)=\inf \{S(x,p):p$ such that $(x,p)\in M\}$. Recent work in the literature has shown that (i) $V$ is a viscosity solution of $H(x,\partial V/\partial x)=0$ provided $V$ is locally Lipschitz, and (ii) $V$ is locally Lipschitz outside the set of caustic points for $M$. It is well known that this construction gives a viscosity solution for finite time variational problems -- the Lipschitz continuity of $V$ follows from that of the initial condition for the variational problem. However, this construction also applies to infinite time variational problems and stationary Hamilton-Jacobi-Bellman equations where the regularity of $V$ is not obvious. We show that for dim$\,M\leq$ 5, the local Lipschitz property follows from some geometrical assumptions on $M$ -- in particular that the Maslov index vanishes on closed curves on $M.$ We obtain a local Lipschitz constant for $V$ which is some uniform power of a local bound on $M$, the power being determined by dim$M.$ This analysis uses Arnold's classification of Lagrangian singularities.
@article{JCA_2002_9_1_JCA_2002_9_1_a8,
     author = {D. McCaffrey and S. P. Banks},
     title = {Lagrangian {Manifolds,} {Viscosity} {Solutions} and {Maslov} {Index}},
     journal = {Journal of convex analysis},
     pages = {185--224},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2002},
     url = {http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a8/}
}
TY  - JOUR
AU  - D. McCaffrey
AU  - S. P. Banks
TI  - Lagrangian Manifolds, Viscosity Solutions and Maslov Index
JO  - Journal of convex analysis
PY  - 2002
SP  - 185
EP  - 224
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a8/
ID  - JCA_2002_9_1_JCA_2002_9_1_a8
ER  - 
%0 Journal Article
%A D. McCaffrey
%A S. P. Banks
%T Lagrangian Manifolds, Viscosity Solutions and Maslov Index
%J Journal of convex analysis
%D 2002
%P 185-224
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a8/
%F JCA_2002_9_1_JCA_2002_9_1_a8
D. McCaffrey; S. P. Banks. Lagrangian Manifolds, Viscosity Solutions and Maslov Index. Journal of convex analysis, Tome 9 (2002) no. 1, pp. 185-224. http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a8/