Generalized Variational Inequalities
Journal of convex analysis, Tome 9 (2002) no. 1, pp. 159-184.

Voir la notice de l'article provenant de la source Heldermann Verlag

We consider a rate independent evolution variational inequality with an arbitrary convex closed constraint Z in a Hilbert space X. The main results consist in proving that it is well-posed in the Young integral setting in the space of functions of essentially bounded variation for every Z and in the space of regulated functions provided 0 lies in the interior of Z.
Classification : 34C55, 26A45, 49J40
Mots-clés : Hysteresis, evolution variational inequality, Young integral, play operator
@article{JCA_2002_9_1_JCA_2002_9_1_a7,
     author = {P. Krejc{\'\i} and P. Laurencot},
     title = {Generalized {Variational} {Inequalities}},
     journal = {Journal of convex analysis},
     pages = {159--184},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2002},
     url = {http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a7/}
}
TY  - JOUR
AU  - P. Krejcí
AU  - P. Laurencot
TI  - Generalized Variational Inequalities
JO  - Journal of convex analysis
PY  - 2002
SP  - 159
EP  - 184
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a7/
ID  - JCA_2002_9_1_JCA_2002_9_1_a7
ER  - 
%0 Journal Article
%A P. Krejcí
%A P. Laurencot
%T Generalized Variational Inequalities
%J Journal of convex analysis
%D 2002
%P 159-184
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a7/
%F JCA_2002_9_1_JCA_2002_9_1_a7
P. Krejcí; P. Laurencot. Generalized Variational Inequalities. Journal of convex analysis, Tome 9 (2002) no. 1, pp. 159-184. http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a7/