A Priori Gradient Estimates for Bounded Generalized Solutions of a Class of Variational Problems with Linear Growth
Journal of convex analysis, Tome 9 (2002) no. 1, pp. 117-138
Cet article a éte moissonné depuis la source Heldermann Verlag
\def\rz{{\mathbb R}} Given an integrand $f$ of linear growth and assuming an ellipticity condition of the form \[ D^{2}f(Z)(Y,Y)\geq c \big(1+|Z|^{2}\big)^{-\frac{\mu}{2}} |Y|^{2} ,\quad 1 \mu \leq 3\,, \] we consider the variational problem $J[w] = \int_{\Omega} f(\nabla w)\,dx\to\min$ among mappings $w$: $\rz^{n}\supset \Omega\to \rz^{N}$ with prescribed Dirichlet boundary data. If we impose some boundedness condition, then the existence of a generalized minimizer $u^{\ast}$ is proved such that $\int_{\Omega'} |\nabla u^{\ast}|\log^{2}(1+|\nabla u^{\ast}|^{2})\,dx \leq c(\Omega')$ for any $\Omega'\Subset \Omega$. Here the limit case $\mu =3$ is included and we obtain a clear interpretation of the particular solution $u^{\ast}$. Moreover, if $\mu 3$ and if $f(Z)=g(|Z|^{2})$ is assumed in the vector-valued case, then we show local $C^{1,\alpha}$-regularity and uniqueness up to a constant of generalized minimizers. These results substantially improve earlier contributions of the author and M. Fuchs [Rend. Mat. Appl., VII. Ser. 22 (2002) 249--274], where only the case of exponents $1 \mu 1 +2/n$ could be considered.
Classification :
49N60, 49N15, 49M29
Mots-clés : Linear growth, minimizers, regularity, duality, BV-functions
Mots-clés : Linear growth, minimizers, regularity, duality, BV-functions
@article{JCA_2002_9_1_JCA_2002_9_1_a5,
author = {M. Bildhauer},
title = {A {Priori} {Gradient} {Estimates} for {Bounded} {Generalized} {Solutions} of a {Class} of {Variational} {Problems} with {Linear} {Growth}},
journal = {Journal of convex analysis},
pages = {117--138},
year = {2002},
volume = {9},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a5/}
}
TY - JOUR AU - M. Bildhauer TI - A Priori Gradient Estimates for Bounded Generalized Solutions of a Class of Variational Problems with Linear Growth JO - Journal of convex analysis PY - 2002 SP - 117 EP - 138 VL - 9 IS - 1 UR - http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a5/ ID - JCA_2002_9_1_JCA_2002_9_1_a5 ER -
%0 Journal Article %A M. Bildhauer %T A Priori Gradient Estimates for Bounded Generalized Solutions of a Class of Variational Problems with Linear Growth %J Journal of convex analysis %D 2002 %P 117-138 %V 9 %N 1 %U http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a5/ %F JCA_2002_9_1_JCA_2002_9_1_a5
M. Bildhauer. A Priori Gradient Estimates for Bounded Generalized Solutions of a Class of Variational Problems with Linear Growth. Journal of convex analysis, Tome 9 (2002) no. 1, pp. 117-138. http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a5/