A Priori Gradient Estimates for Bounded Generalized Solutions of a Class of Variational Problems with Linear Growth
Journal of convex analysis, Tome 9 (2002) no. 1, pp. 117-138.

Voir la notice de l'article provenant de la source Heldermann Verlag

\def\rz{{\mathbb R}} Given an integrand $f$ of linear growth and assuming an ellipticity condition of the form \[ D^{2}f(Z)(Y,Y)\geq c \big(1+|Z|^{2}\big)^{-\frac{\mu}{2}} |Y|^{2} ,\quad 1 \mu \leq 3\,, \] we consider the variational problem $J[w] = \int_{\Omega} f(\nabla w)\,dx\to\min$ among mappings $w$: $\rz^{n}\supset \Omega\to \rz^{N}$ with prescribed Dirichlet boundary data. If we impose some boundedness condition, then the existence of a generalized minimizer $u^{\ast}$ is proved such that $\int_{\Omega'} |\nabla u^{\ast}|\log^{2}(1+|\nabla u^{\ast}|^{2})\,dx \leq c(\Omega')$ for any $\Omega'\Subset \Omega$. Here the limit case $\mu =3$ is included and we obtain a clear interpretation of the particular solution $u^{\ast}$. Moreover, if $\mu 3$ and if $f(Z)=g(|Z|^{2})$ is assumed in the vector-valued case, then we show local $C^{1,\alpha}$-regularity and uniqueness up to a constant of generalized minimizers. These results substantially improve earlier contributions of the author and M. Fuchs [Rend. Mat. Appl., VII. Ser. 22 (2002) 249--274], where only the case of exponents $1 \mu 1 +2/n$ could be considered.
Classification : 49N60, 49N15, 49M29
Mots-clés : Linear growth, minimizers, regularity, duality, BV-functions
@article{JCA_2002_9_1_JCA_2002_9_1_a5,
     author = {M. Bildhauer},
     title = {A {Priori} {Gradient} {Estimates} for {Bounded} {Generalized} {Solutions} of a {Class} of {Variational} {Problems} with {Linear} {Growth}},
     journal = {Journal of convex analysis},
     pages = {117--138},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2002},
     url = {http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a5/}
}
TY  - JOUR
AU  - M. Bildhauer
TI  - A Priori Gradient Estimates for Bounded Generalized Solutions of a Class of Variational Problems with Linear Growth
JO  - Journal of convex analysis
PY  - 2002
SP  - 117
EP  - 138
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a5/
ID  - JCA_2002_9_1_JCA_2002_9_1_a5
ER  - 
%0 Journal Article
%A M. Bildhauer
%T A Priori Gradient Estimates for Bounded Generalized Solutions of a Class of Variational Problems with Linear Growth
%J Journal of convex analysis
%D 2002
%P 117-138
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a5/
%F JCA_2002_9_1_JCA_2002_9_1_a5
M. Bildhauer. A Priori Gradient Estimates for Bounded Generalized Solutions of a Class of Variational Problems with Linear Growth. Journal of convex analysis, Tome 9 (2002) no. 1, pp. 117-138. http://geodesic.mathdoc.fr/item/JCA_2002_9_1_JCA_2002_9_1_a5/