Convex Representation for Lower Semicontinuous Envelopes of Functionals in L1
Journal of convex analysis, Tome 8 (2001) no. 1, pp. 149-17
Voir la notice de l'article provenant de la source Heldermann Verlag
G. Alberti, G. Bouchitte and G. Dal Maso [The calibration method for the Mumford-Shah functional, C. R. Acad. Sci. Paris 329, Serie I (1999) 249--254] recently found sufficient conditions for the minimizers of the (nonconvex) Mumford-Shah functional. Their method consists in an extension of the calibration method (that is used for the characterization of minimal surfaces), adapted to this functional. The existence of a calibration, given a minimizer of the functional, remains an open problem.
@article{JCA_2001_8_1_JCA_2001_8_1_a6,
author = {A. Chambolle},
title = {Convex {Representation} for {Lower} {Semicontinuous} {Envelopes} of {Functionals} in {L\protect\textsuperscript{1}}},
journal = {Journal of convex analysis},
pages = {149--17},
publisher = {mathdoc},
volume = {8},
number = {1},
year = {2001},
url = {http://geodesic.mathdoc.fr/item/JCA_2001_8_1_JCA_2001_8_1_a6/}
}
TY - JOUR AU - A. Chambolle TI - Convex Representation for Lower Semicontinuous Envelopes of Functionals in L1 JO - Journal of convex analysis PY - 2001 SP - 149 EP - 17 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2001_8_1_JCA_2001_8_1_a6/ ID - JCA_2001_8_1_JCA_2001_8_1_a6 ER -
A. Chambolle. Convex Representation for Lower Semicontinuous Envelopes of Functionals in L1. Journal of convex analysis, Tome 8 (2001) no. 1, pp. 149-17. http://geodesic.mathdoc.fr/item/JCA_2001_8_1_JCA_2001_8_1_a6/