A Higher-Order Smoothing Technique for Polyhedral Convex Functions: Geometric and Probabilistic Considerations
Journal of convex analysis, Tome 8 (2001) no. 1, pp. 109-126
Voir la notice de l'article provenant de la source Heldermann Verlag
\def\R{\mathbb R} Let $\R^n$ denote the usual n-dimensional Euclidean space. A polyhedral convex function $f \colon \R^n \to \R\cup\{+\infty\}$ can always be seen as the pointwise limit of a certain family $\{f^t\}_{t>0}$ of $C^{\infty}$ convex functions. An explicit construction of this family $\{f^t\}_{t>0}$ can be found in a previous paper by the second author [A. Seeger, Smoothing a polyhedral convex function via cumulant transformation and homogenization, Annales Polinici Mathematici 67 (1997) 259--268]. The aim of the present work is to further explore this $C^{\infty}$-approximation scheme. In particular, one shows how the family $\{f^t\}_{t>0}$ yields first and second-order information on the behavior of $f$. Links to linear programming and Legendre-Fenchel duality theory are also discussed.
Classification :
41A30, 52B70, 60E10
Mots-clés : Polyhedral convex function, smooth approximation, subgradient, linear programming
Mots-clés : Polyhedral convex function, smooth approximation, subgradient, linear programming
@article{JCA_2001_8_1_JCA_2001_8_1_a4,
author = {S. Guillaume and A. Seeger},
title = {A {Higher-Order} {Smoothing} {Technique} for {Polyhedral} {Convex} {Functions:} {Geometric} and {Probabilistic} {Considerations}},
journal = {Journal of convex analysis},
pages = {109--126},
publisher = {mathdoc},
volume = {8},
number = {1},
year = {2001},
url = {http://geodesic.mathdoc.fr/item/JCA_2001_8_1_JCA_2001_8_1_a4/}
}
TY - JOUR AU - S. Guillaume AU - A. Seeger TI - A Higher-Order Smoothing Technique for Polyhedral Convex Functions: Geometric and Probabilistic Considerations JO - Journal of convex analysis PY - 2001 SP - 109 EP - 126 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/JCA_2001_8_1_JCA_2001_8_1_a4/ ID - JCA_2001_8_1_JCA_2001_8_1_a4 ER -
%0 Journal Article %A S. Guillaume %A A. Seeger %T A Higher-Order Smoothing Technique for Polyhedral Convex Functions: Geometric and Probabilistic Considerations %J Journal of convex analysis %D 2001 %P 109-126 %V 8 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/JCA_2001_8_1_JCA_2001_8_1_a4/ %F JCA_2001_8_1_JCA_2001_8_1_a4
S. Guillaume; A. Seeger. A Higher-Order Smoothing Technique for Polyhedral Convex Functions: Geometric and Probabilistic Considerations. Journal of convex analysis, Tome 8 (2001) no. 1, pp. 109-126. http://geodesic.mathdoc.fr/item/JCA_2001_8_1_JCA_2001_8_1_a4/