Convexity Properties of Some Implicit Functions
Journal of convex analysis, Tome 8 (2001) no. 1, pp. 241-254.

Voir la notice de l'article provenant de la source Heldermann Verlag

We consider implicit functions y = y(x) defined by a system of equations Gi(x,y) = 0, i=1,...,m. In the case of convex differentiable functions Gi we establish some sufficient conditions under which the component function yk(x) is convex or concave. Examples show that without these assumptions yk(x) can be nonconvex and nonconcave. For the special case with additive separated convex functions Gi(x,y) = gi(x) + hi(y) additional results concerning the gradient vectors of gi and hi are obtained which can be applied to the differentiable continuation of convex marginal functions in parametric optimization.
Classification : 26B10, 26B25, 52A20, 90C25
Mots-clés : Convex function, implicit function, convex parametric optimization
@article{JCA_2001_8_1_JCA_2001_8_1_a10,
     author = {U. W\"urker},
     title = {Convexity {Properties} of {Some} {Implicit} {Functions}},
     journal = {Journal of convex analysis},
     pages = {241--254},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2001},
     url = {http://geodesic.mathdoc.fr/item/JCA_2001_8_1_JCA_2001_8_1_a10/}
}
TY  - JOUR
AU  - U. Würker
TI  - Convexity Properties of Some Implicit Functions
JO  - Journal of convex analysis
PY  - 2001
SP  - 241
EP  - 254
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2001_8_1_JCA_2001_8_1_a10/
ID  - JCA_2001_8_1_JCA_2001_8_1_a10
ER  - 
%0 Journal Article
%A U. Würker
%T Convexity Properties of Some Implicit Functions
%J Journal of convex analysis
%D 2001
%P 241-254
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2001_8_1_JCA_2001_8_1_a10/
%F JCA_2001_8_1_JCA_2001_8_1_a10
U. Würker. Convexity Properties of Some Implicit Functions. Journal of convex analysis, Tome 8 (2001) no. 1, pp. 241-254. http://geodesic.mathdoc.fr/item/JCA_2001_8_1_JCA_2001_8_1_a10/