Relationship Between Dynamic Programming and the Maximum Principle Under State Constraints
Journal of convex analysis, Tome 6 (1999) no. 2, pp. 335-348.

Voir la notice de l'article provenant de la source Heldermann Verlag

Bellman's dynamic programming and Pontryagin's maximum principle are two basic tools for studying optimal control theory. We consider the optimal control problem under state constraints and examine the relationship between the maximum principle and dynamic programming via the adjoint, Hamiltonian and value functions. For this purpose the notions of generalized superdifferentials are introduced.
@article{JCA_1999_6_2_JCA_1999_6_2_a5,
     author = {K.-E. Kim},
     title = {Relationship {Between} {Dynamic} {Programming} and the {Maximum} {Principle} {Under} {State} {Constraints}},
     journal = {Journal of convex analysis},
     pages = {335--348},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {1999},
     url = {http://geodesic.mathdoc.fr/item/JCA_1999_6_2_JCA_1999_6_2_a5/}
}
TY  - JOUR
AU  - K.-E. Kim
TI  - Relationship Between Dynamic Programming and the Maximum Principle Under State Constraints
JO  - Journal of convex analysis
PY  - 1999
SP  - 335
EP  - 348
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_1999_6_2_JCA_1999_6_2_a5/
ID  - JCA_1999_6_2_JCA_1999_6_2_a5
ER  - 
%0 Journal Article
%A K.-E. Kim
%T Relationship Between Dynamic Programming and the Maximum Principle Under State Constraints
%J Journal of convex analysis
%D 1999
%P 335-348
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_1999_6_2_JCA_1999_6_2_a5/
%F JCA_1999_6_2_JCA_1999_6_2_a5
K.-E. Kim. Relationship Between Dynamic Programming and the Maximum Principle Under State Constraints. Journal of convex analysis, Tome 6 (1999) no. 2, pp. 335-348. http://geodesic.mathdoc.fr/item/JCA_1999_6_2_JCA_1999_6_2_a5/