Dykstra's Algorithm as the Nonlinear Extension of Bregman's Optimization Method
Journal of convex analysis, Tome 6 (1999) no. 2, pp. 319-334
Cet article a éte moissonné depuis la source Heldermann Verlag
We show that Dykstra's algorithm with Bregman projections, which finds the Bregman projection of a point onto the nonempty intersection of finitely many closed convex sets, is actually the nonlinear extension of Bregman's primal-dual, dual coordinate ascent, row-action minimization algorithm. Based on this observation we give an alternative convergence analysis and a new geometric interpretation of Dykstra's algorithm with Bregman projections which complements recent work of Censor and Reich, Bauschke and Lewis, and Tseng.
Classification :
47N10, 49M30, 90C20
Mots-clés : Bregman projection, convex programming, Dykstra's algorithm
Mots-clés : Bregman projection, convex programming, Dykstra's algorithm
@article{JCA_1999_6_2_JCA_1999_6_2_a4,
author = {L. M. Bregman and Y. Censor and S. Reich},
title = {Dykstra's {Algorithm} as the {Nonlinear} {Extension} of {Bregman's} {Optimization} {Method}},
journal = {Journal of convex analysis},
pages = {319--334},
year = {1999},
volume = {6},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JCA_1999_6_2_JCA_1999_6_2_a4/}
}
TY - JOUR AU - L. M. Bregman AU - Y. Censor AU - S. Reich TI - Dykstra's Algorithm as the Nonlinear Extension of Bregman's Optimization Method JO - Journal of convex analysis PY - 1999 SP - 319 EP - 334 VL - 6 IS - 2 UR - http://geodesic.mathdoc.fr/item/JCA_1999_6_2_JCA_1999_6_2_a4/ ID - JCA_1999_6_2_JCA_1999_6_2_a4 ER -
L. M. Bregman; Y. Censor; S. Reich. Dykstra's Algorithm as the Nonlinear Extension of Bregman's Optimization Method. Journal of convex analysis, Tome 6 (1999) no. 2, pp. 319-334. http://geodesic.mathdoc.fr/item/JCA_1999_6_2_JCA_1999_6_2_a4/