Boundary Homogenization for a Quasi-Linear Elliptic Problem with Dirichlet Boundary Conditions Posed on Small Inclusions Distributed on the Boundary
Journal of convex analysis, Tome 6 (1999) no. 2, pp. 267-292.

Voir la notice de l'article provenant de la source Heldermann Verlag

We describe the asymptotic behaviour of the solution of a quasi-linear elliptic problem posed in a domain of Rn, n>= 3 and with homogeneous Dirichlet boundary conditions imposed on small zones of size less than ε distributed on the boundary of this domain when the parameter ε goes to 0. We use epi-convergence arguments in order to establish the limit behaviour.
@article{JCA_1999_6_2_JCA_1999_6_2_a2,
     author = {M. El Jarroudi},
     title = {Boundary {Homogenization} for a {Quasi-Linear} {Elliptic} {Problem} with {Dirichlet} {Boundary} {Conditions} {Posed} on {Small} {Inclusions} {Distributed} on the {Boundary}},
     journal = {Journal of convex analysis},
     pages = {267--292},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {1999},
     url = {http://geodesic.mathdoc.fr/item/JCA_1999_6_2_JCA_1999_6_2_a2/}
}
TY  - JOUR
AU  - M. El Jarroudi
TI  - Boundary Homogenization for a Quasi-Linear Elliptic Problem with Dirichlet Boundary Conditions Posed on Small Inclusions Distributed on the Boundary
JO  - Journal of convex analysis
PY  - 1999
SP  - 267
EP  - 292
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_1999_6_2_JCA_1999_6_2_a2/
ID  - JCA_1999_6_2_JCA_1999_6_2_a2
ER  - 
%0 Journal Article
%A M. El Jarroudi
%T Boundary Homogenization for a Quasi-Linear Elliptic Problem with Dirichlet Boundary Conditions Posed on Small Inclusions Distributed on the Boundary
%J Journal of convex analysis
%D 1999
%P 267-292
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_1999_6_2_JCA_1999_6_2_a2/
%F JCA_1999_6_2_JCA_1999_6_2_a2
M. El Jarroudi. Boundary Homogenization for a Quasi-Linear Elliptic Problem with Dirichlet Boundary Conditions Posed on Small Inclusions Distributed on the Boundary. Journal of convex analysis, Tome 6 (1999) no. 2, pp. 267-292. http://geodesic.mathdoc.fr/item/JCA_1999_6_2_JCA_1999_6_2_a2/