Notes on simplicial rook graphs
Journal of Algebraic Combinatorics, Tome 43 (2016) no. 4, pp. 783-799.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

The simplicial rook graph $\mathrm{SR}(m,n)$ is the graph of which the vertices are the sequences of nonnegative integers of length $m$ summing to $n$, where two such sequences are adjacent when they differ in precisely two places. We show that $\mathrm{SR}(m,n)$ has integral eigenvalues, and smallest eigenvalue $s = \max(-n,-{{m}\choose{2}})$, and that this graph has a large part of its spectrum in common with the Johnson graph $J(m+n-1,n)$. We determine the automorphism group and several other properties.
Classification : 05C50, 05C25
Keywords: simplicial rook graph, graph spectra, integral graph, Johnson graph, equitable partition
@article{JAC_2016__43_4_a6,
     author = {Brouwer, Andries E. and Cioab\u{a}, Sebastian M. and Haemers, Willem H. and Vermette, Jason R.},
     title = {Notes on simplicial rook graphs},
     journal = {Journal of Algebraic Combinatorics},
     pages = {783--799},
     publisher = {mathdoc},
     volume = {43},
     number = {4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2016__43_4_a6/}
}
TY  - JOUR
AU  - Brouwer, Andries E.
AU  - Cioabă, Sebastian M.
AU  - Haemers, Willem H.
AU  - Vermette, Jason R.
TI  - Notes on simplicial rook graphs
JO  - Journal of Algebraic Combinatorics
PY  - 2016
SP  - 783
EP  - 799
VL  - 43
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2016__43_4_a6/
LA  - en
ID  - JAC_2016__43_4_a6
ER  - 
%0 Journal Article
%A Brouwer, Andries E.
%A Cioabă, Sebastian M.
%A Haemers, Willem H.
%A Vermette, Jason R.
%T Notes on simplicial rook graphs
%J Journal of Algebraic Combinatorics
%D 2016
%P 783-799
%V 43
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2016__43_4_a6/
%G en
%F JAC_2016__43_4_a6
Brouwer, Andries E.; Cioabă, Sebastian M.; Haemers, Willem H.; Vermette, Jason R. Notes on simplicial rook graphs. Journal of Algebraic Combinatorics, Tome 43 (2016) no. 4, pp. 783-799. http://geodesic.mathdoc.fr/item/JAC_2016__43_4_a6/