Three-valued Gauss periods, circulant weighing matrices and association schemes
Journal of Algebraic Combinatorics, Tome 43 (2016) no. 4, pp. 851-875.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

Gauss periods taking exactly two values are closely related to two-weight irreducible cyclic codes and strongly regular Cayley graphs. They have been extensively studied in the work of B. Schmidt and C. White [Finite Fields Appl. 8, No. 1, 1--17 (2002; Zbl 1023.94016)] and others. In this paper, we consider the question of when Gauss periods take exactly three rational values. We obtain numerical necessary conditions for Gauss periods to take exactly three rational values. We show that in certain cases, the necessary conditions obtained are also sufficient. We give numerous examples where the Gauss periods take exactly three values. Furthermore, we discuss connections between three-valued Gauss periods and combinatorial structures such as circulant weighing matrices and three-class association schemes.
Classification : 05E30, 05C25, 94B15
Keywords: association scheme, circulant weighing matrix, cyclotomy, Gauss period, Gauss sum
@article{JAC_2016__43_4_a2,
     author = {Feng, Tao and Momihara, Koji and Xiang, Qing},
     title = {Three-valued {Gauss} periods, circulant weighing matrices and association schemes},
     journal = {Journal of Algebraic Combinatorics},
     pages = {851--875},
     publisher = {mathdoc},
     volume = {43},
     number = {4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2016__43_4_a2/}
}
TY  - JOUR
AU  - Feng, Tao
AU  - Momihara, Koji
AU  - Xiang, Qing
TI  - Three-valued Gauss periods, circulant weighing matrices and association schemes
JO  - Journal of Algebraic Combinatorics
PY  - 2016
SP  - 851
EP  - 875
VL  - 43
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2016__43_4_a2/
LA  - en
ID  - JAC_2016__43_4_a2
ER  - 
%0 Journal Article
%A Feng, Tao
%A Momihara, Koji
%A Xiang, Qing
%T Three-valued Gauss periods, circulant weighing matrices and association schemes
%J Journal of Algebraic Combinatorics
%D 2016
%P 851-875
%V 43
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2016__43_4_a2/
%G en
%F JAC_2016__43_4_a2
Feng, Tao; Momihara, Koji; Xiang, Qing. Three-valued Gauss periods, circulant weighing matrices and association schemes. Journal of Algebraic Combinatorics, Tome 43 (2016) no. 4, pp. 851-875. http://geodesic.mathdoc.fr/item/JAC_2016__43_4_a2/