An algebraic approach to finite projective planes
Journal of Algebraic Combinatorics, Tome 43 (2016) no. 3, pp. 495-519.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

A finite projective plane, or more generally a finite linear space, has an associated incidence complex that gives rise to two natural algebras: the Stanley-Reisner ring $R/I_\Lambda $ and the inverse system algebra $R/I_\Delta $. We give a careful study of both of these algebras. Our main results are a full description of the graded Betti numbers of both algebras in the more general setting of linear spaces (giving the result for the projective planes as a special case), and a classification of the characteristics in which the inverse system algebra associated to a finite projective plane has the weak or strong Lefschetz property.
Classification : 05E40, 05B25, 13D02, 13E10, 13H10, 51E15
Keywords: finite projective plane, linear space, weak Lefschetz property, strong Lefschetz property, minimal free resolution, monomial algebra, level algebra, Stanley-Reisner ring, inverse system
@article{JAC_2016__43_3_a8,
     author = {Cook, David II and Migliore, Juan and Nagel, Uwe and Zanello, Fabrizio},
     title = {An algebraic approach to finite projective planes},
     journal = {Journal of Algebraic Combinatorics},
     pages = {495--519},
     publisher = {mathdoc},
     volume = {43},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2016__43_3_a8/}
}
TY  - JOUR
AU  - Cook, David II
AU  - Migliore, Juan
AU  - Nagel, Uwe
AU  - Zanello, Fabrizio
TI  - An algebraic approach to finite projective planes
JO  - Journal of Algebraic Combinatorics
PY  - 2016
SP  - 495
EP  - 519
VL  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2016__43_3_a8/
LA  - en
ID  - JAC_2016__43_3_a8
ER  - 
%0 Journal Article
%A Cook, David II
%A Migliore, Juan
%A Nagel, Uwe
%A Zanello, Fabrizio
%T An algebraic approach to finite projective planes
%J Journal of Algebraic Combinatorics
%D 2016
%P 495-519
%V 43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2016__43_3_a8/
%G en
%F JAC_2016__43_3_a8
Cook, David II; Migliore, Juan; Nagel, Uwe; Zanello, Fabrizio. An algebraic approach to finite projective planes. Journal of Algebraic Combinatorics, Tome 43 (2016) no. 3, pp. 495-519. http://geodesic.mathdoc.fr/item/JAC_2016__43_3_a8/