Classification of tight regular polyhedra
Journal of Algebraic Combinatorics, Tome 43 (2016) no. 3, pp. 665-691.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

A regular polyhedron of type $\{p, q\}$ has at least 2pq flags, and it is called tight if it has exactly 2pq flags. The values of $p$ and $q$ for which there exist tight orientably regular polyhedra were previously known. We determine for which values of $p$ and $q$ there is a tight non-orientably regular polyhedron of type $\{p, q\}$. Furthermore, we completely classify tight regular polyhedra in terms of their automorphism groups.
Classification : 52B15, 51M20, 05E18, 52B70
Keywords: abstract regular polytope, tight polyhedron, tight polytope, flat polyhedron, flat polytope
@article{JAC_2016__43_3_a3,
     author = {Cunningham, Gabe and Pellicer, Daniel},
     title = {Classification of tight regular polyhedra},
     journal = {Journal of Algebraic Combinatorics},
     pages = {665--691},
     publisher = {mathdoc},
     volume = {43},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2016__43_3_a3/}
}
TY  - JOUR
AU  - Cunningham, Gabe
AU  - Pellicer, Daniel
TI  - Classification of tight regular polyhedra
JO  - Journal of Algebraic Combinatorics
PY  - 2016
SP  - 665
EP  - 691
VL  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2016__43_3_a3/
LA  - en
ID  - JAC_2016__43_3_a3
ER  - 
%0 Journal Article
%A Cunningham, Gabe
%A Pellicer, Daniel
%T Classification of tight regular polyhedra
%J Journal of Algebraic Combinatorics
%D 2016
%P 665-691
%V 43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2016__43_3_a3/
%G en
%F JAC_2016__43_3_a3
Cunningham, Gabe; Pellicer, Daniel. Classification of tight regular polyhedra. Journal of Algebraic Combinatorics, Tome 43 (2016) no. 3, pp. 665-691. http://geodesic.mathdoc.fr/item/JAC_2016__43_3_a3/