Closure planes
Journal of Algebraic Combinatorics, Tome 43 (2016) no. 3, pp. 735-749.

Voir la notice de l'article provenant de la source Electronic Library of Mathematics

We introduce a simple algebraic method for constructing infinite affine (and projective) planes from an infinite set of finite planes of prime power order stemming from a "root" plane. The construction uses finite fields and infinite extensions of finite fields in a critical way. We obtain a classical-looking result which states that if the construction succeeds over the algebraic closure of a finite field, then both the infinite plane and the original root plane must be Desarguesian. The Lenz-Barlotti types for these planes are then linked to the Lenz-Barlotti type of the root plane. Examples are then given. These show that under suitable conditions, the method can yield infinitely many non-isomorphic infinite planes. These examples are of Lenz-Barlotti types II.1 and V.1.
Classification : 51D20, 51D15, 05B25, 12E05
Keywords: closures of fields, infinite affine planes, planar ternary rings, Lenz-Barlotti classification
@article{JAC_2016__43_3_a0,
     author = {Coulter, Robert S. and Matthews, Rex W.},
     title = {Closure planes},
     journal = {Journal of Algebraic Combinatorics},
     pages = {735--749},
     publisher = {mathdoc},
     volume = {43},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JAC_2016__43_3_a0/}
}
TY  - JOUR
AU  - Coulter, Robert S.
AU  - Matthews, Rex W.
TI  - Closure planes
JO  - Journal of Algebraic Combinatorics
PY  - 2016
SP  - 735
EP  - 749
VL  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JAC_2016__43_3_a0/
LA  - en
ID  - JAC_2016__43_3_a0
ER  - 
%0 Journal Article
%A Coulter, Robert S.
%A Matthews, Rex W.
%T Closure planes
%J Journal of Algebraic Combinatorics
%D 2016
%P 735-749
%V 43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JAC_2016__43_3_a0/
%G en
%F JAC_2016__43_3_a0
Coulter, Robert S.; Matthews, Rex W. Closure planes. Journal of Algebraic Combinatorics, Tome 43 (2016) no. 3, pp. 735-749. http://geodesic.mathdoc.fr/item/JAC_2016__43_3_a0/